new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 12

Diffusion Models for Multi-Task Generative Modeling

Diffusion-based generative modeling has been achieving state-of-the-art results on various generation tasks. Most diffusion models, however, are limited to a single-generation modeling. Can we generalize diffusion models with the ability of multi-modal generative training for more generalizable modeling? In this paper, we propose a principled way to define a diffusion model by constructing a unified multi-modal diffusion model in a common diffusion space. We define the forward diffusion process to be driven by an information aggregation from multiple types of task-data, e.g., images for a generation task and labels for a classification task. In the reverse process, we enforce information sharing by parameterizing a shared backbone denoising network with additional modality-specific decoder heads. Such a structure can simultaneously learn to generate different types of multi-modal data with a multi-task loss, which is derived from a new multi-modal variational lower bound that generalizes the standard diffusion model. We propose several multimodal generation settings to verify our framework, including image transition, masked-image training, joint image-label and joint image-representation generative modeling. Extensive experimental results on ImageNet indicate the effectiveness of our framework for various multi-modal generative modeling, which we believe is an important research direction worthy of more future explorations.

Harnessing the Spatial-Temporal Attention of Diffusion Models for High-Fidelity Text-to-Image Synthesis

Diffusion-based models have achieved state-of-the-art performance on text-to-image synthesis tasks. However, one critical limitation of these models is the low fidelity of generated images with respect to the text description, such as missing objects, mismatched attributes, and mislocated objects. One key reason for such inconsistencies is the inaccurate cross-attention to text in both the spatial dimension, which controls at what pixel region an object should appear, and the temporal dimension, which controls how different levels of details are added through the denoising steps. In this paper, we propose a new text-to-image algorithm that adds explicit control over spatial-temporal cross-attention in diffusion models. We first utilize a layout predictor to predict the pixel regions for objects mentioned in the text. We then impose spatial attention control by combining the attention over the entire text description and that over the local description of the particular object in the corresponding pixel region of that object. The temporal attention control is further added by allowing the combination weights to change at each denoising step, and the combination weights are optimized to ensure high fidelity between the image and the text. Experiments show that our method generates images with higher fidelity compared to diffusion-model-based baselines without fine-tuning the diffusion model. Our code is publicly available at https://github.com/UCSB-NLP-Chang/Diffusion-SpaceTime-Attn.

Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis

Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance.

Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models

Recently, diffusion models have made remarkable progress in text-to-image (T2I) generation, synthesizing images with high fidelity and diverse contents. Despite this advancement, latent space smoothness within diffusion models remains largely unexplored. Smooth latent spaces ensure that a perturbation on an input latent corresponds to a steady change in the output image. This property proves beneficial in downstream tasks, including image interpolation, inversion, and editing. In this work, we expose the non-smoothness of diffusion latent spaces by observing noticeable visual fluctuations resulting from minor latent variations. To tackle this issue, we propose Smooth Diffusion, a new category of diffusion models that can be simultaneously high-performing and smooth. Specifically, we introduce Step-wise Variation Regularization to enforce the proportion between the variations of an arbitrary input latent and that of the output image is a constant at any diffusion training step. In addition, we devise an interpolation standard deviation (ISTD) metric to effectively assess the latent space smoothness of a diffusion model. Extensive quantitative and qualitative experiments demonstrate that Smooth Diffusion stands out as a more desirable solution not only in T2I generation but also across various downstream tasks. Smooth Diffusion is implemented as a plug-and-play Smooth-LoRA to work with various community models. Code is available at https://github.com/SHI-Labs/Smooth-Diffusion.

SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion

The generation of Scalable Vector Graphics (SVG) assets from textual data remains a significant challenge, largely due to the scarcity of high-quality vector datasets and the limitations in scalable vector representations required for modeling intricate graphic distributions. This work introduces SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without reliance on a text-based discrete language model or prolonged SDS optimization. The essence of SVGFusion is to learn a continuous latent space for vector graphics with a popular Text-to-Image framework. Specifically, SVGFusion consists of two modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). VP-VAE takes both the SVGs and corresponding rasterizations as inputs and learns a continuous latent space, whereas VS-DiT learns to generate a latent code within this space based on the text prompt. Based on VP-VAE, a novel rendering sequence modeling strategy is proposed to enable the latent space to embed the knowledge of construction logics in SVGs. This empowers the model to achieve human-like design capabilities in vector graphics, while systematically preventing occlusion in complex graphic compositions. Moreover, our SVGFusion's ability can be continuously improved by leveraging the scalability of the VS-DiT by adding more VS-DiT blocks. A large-scale SVG dataset is collected to evaluate the effectiveness of our proposed method. Extensive experimentation has confirmed the superiority of our SVGFusion over existing SVG generation methods, achieving enhanced quality and generalizability, thereby establishing a novel framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/{https://ximinng.github.io/SVGFusionProject/}

ChatFace: Chat-Guided Real Face Editing via Diffusion Latent Space Manipulation

Editing real facial images is a crucial task in computer vision with significant demand in various real-world applications. While GAN-based methods have showed potential in manipulating images especially when combined with CLIP, these methods are limited in their ability to reconstruct real images due to challenging GAN inversion capability. Despite the successful image reconstruction achieved by diffusion-based methods, there are still challenges in effectively manipulating fine-gained facial attributes with textual instructions.To address these issues and facilitate convenient manipulation of real facial images, we propose a novel approach that conduct text-driven image editing in the semantic latent space of diffusion model. By aligning the temporal feature of the diffusion model with the semantic condition at generative process, we introduce a stable manipulation strategy, which perform precise zero-shot manipulation effectively. Furthermore, we develop an interactive system named ChatFace, which combines the zero-shot reasoning ability of large language models to perform efficient manipulations in diffusion semantic latent space. This system enables users to perform complex multi-attribute manipulations through dialogue, opening up new possibilities for interactive image editing. Extensive experiments confirmed that our approach outperforms previous methods and enables precise editing of real facial images, making it a promising candidate for real-world applications. Project page: https://dongxuyue.github.io/chatface/

Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling

Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20times speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.

SpaceBlender: Creating Context-Rich Collaborative Spaces Through Generative 3D Scene Blending

There is increased interest in using generative AI to create 3D spaces for Virtual Reality (VR) applications. However, today's models produce artificial environments, falling short of supporting collaborative tasks that benefit from incorporating the user's physical context. To generate environments that support VR telepresence, we introduce SpaceBlender, a novel pipeline that utilizes generative AI techniques to blend users' physical surroundings into unified virtual spaces. This pipeline transforms user-provided 2D images into context-rich 3D environments through an iterative process consisting of depth estimation, mesh alignment, and diffusion-based space completion guided by geometric priors and adaptive text prompts. In a preliminary within-subjects study, where 20 participants performed a collaborative VR affinity diagramming task in pairs, we compared SpaceBlender with a generic virtual environment and a state-of-the-art scene generation framework, evaluating its ability to create virtual spaces suitable for collaboration. Participants appreciated the enhanced familiarity and context provided by SpaceBlender but also noted complexities in the generative environments that could detract from task focus. Drawing on participant feedback, we propose directions for improving the pipeline and discuss the value and design of blended spaces for different scenarios.

DiffGraph: Heterogeneous Graph Diffusion Model

Recent advances in Graph Neural Networks (GNNs) have revolutionized graph-structured data modeling, yet traditional GNNs struggle with complex heterogeneous structures prevalent in real-world scenarios. Despite progress in handling heterogeneous interactions, two fundamental challenges persist: noisy data significantly compromising embedding quality and learning performance, and existing methods' inability to capture intricate semantic transitions among heterogeneous relations, which impacts downstream predictions. To address these fundamental issues, we present the Heterogeneous Graph Diffusion Model (DiffGraph), a pioneering framework that introduces an innovative cross-view denoising strategy. This advanced approach transforms auxiliary heterogeneous data into target semantic spaces, enabling precise distillation of task-relevant information. At its core, DiffGraph features a sophisticated latent heterogeneous graph diffusion mechanism, implementing a novel forward and backward diffusion process for superior noise management. This methodology achieves simultaneous heterogeneous graph denoising and cross-type transition, while significantly simplifying graph generation through its latent-space diffusion capabilities. Through rigorous experimental validation on both public and industrial datasets, we demonstrate that DiffGraph consistently surpasses existing methods in link prediction and node classification tasks, establishing new benchmarks for robustness and efficiency in heterogeneous graph processing. The model implementation is publicly available at: https://github.com/HKUDS/DiffGraph.

LatentSync: Audio Conditioned Latent Diffusion Models for Lip Sync

We present LatentSync, an end-to-end lip sync framework based on audio conditioned latent diffusion models without any intermediate motion representation, diverging from previous diffusion-based lip sync methods based on pixel space diffusion or two-stage generation. Our framework can leverage the powerful capabilities of Stable Diffusion to directly model complex audio-visual correlations. Additionally, we found that the diffusion-based lip sync methods exhibit inferior temporal consistency due to the inconsistency in the diffusion process across different frames. We propose Temporal REPresentation Alignment (TREPA) to enhance temporal consistency while preserving lip-sync accuracy. TREPA uses temporal representations extracted by large-scale self-supervised video models to align the generated frames with the ground truth frames. Furthermore, we observe the commonly encountered SyncNet convergence issue and conduct comprehensive empirical studies, identifying key factors affecting SyncNet convergence in terms of model architecture, training hyperparameters, and data preprocessing methods. We significantly improve the accuracy of SyncNet from 91% to 94% on the HDTF test set. Since we did not change the overall training framework of SyncNet, our experience can also be applied to other lip sync and audio-driven portrait animation methods that utilize SyncNet. Based on the above innovations, our method outperforms state-of-the-art lip sync methods across various metrics on the HDTF and VoxCeleb2 datasets.

Align your Latents: High-Resolution Video Synthesis with Latent Diffusion Models

Latent Diffusion Models (LDMs) enable high-quality image synthesis while avoiding excessive compute demands by training a diffusion model in a compressed lower-dimensional latent space. Here, we apply the LDM paradigm to high-resolution video generation, a particularly resource-intensive task. We first pre-train an LDM on images only; then, we turn the image generator into a video generator by introducing a temporal dimension to the latent space diffusion model and fine-tuning on encoded image sequences, i.e., videos. Similarly, we temporally align diffusion model upsamplers, turning them into temporally consistent video super resolution models. We focus on two relevant real-world applications: Simulation of in-the-wild driving data and creative content creation with text-to-video modeling. In particular, we validate our Video LDM on real driving videos of resolution 512 x 1024, achieving state-of-the-art performance. Furthermore, our approach can easily leverage off-the-shelf pre-trained image LDMs, as we only need to train a temporal alignment model in that case. Doing so, we turn the publicly available, state-of-the-art text-to-image LDM Stable Diffusion into an efficient and expressive text-to-video model with resolution up to 1280 x 2048. We show that the temporal layers trained in this way generalize to different fine-tuned text-to-image LDMs. Utilizing this property, we show the first results for personalized text-to-video generation, opening exciting directions for future content creation. Project page: https://research.nvidia.com/labs/toronto-ai/VideoLDM/

StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D

In the realm of text-to-3D generation, utilizing 2D diffusion models through score distillation sampling (SDS) frequently leads to issues such as blurred appearances and multi-faced geometry, primarily due to the intrinsically noisy nature of the SDS loss. Our analysis identifies the core of these challenges as the interaction among noise levels in the 2D diffusion process, the architecture of the diffusion network, and the 3D model representation. To overcome these limitations, we present StableDreamer, a methodology incorporating three advances. First, inspired by InstructNeRF2NeRF, we formalize the equivalence of the SDS generative prior and a simple supervised L2 reconstruction loss. This finding provides a novel tool to debug SDS, which we use to show the impact of time-annealing noise levels on reducing multi-faced geometries. Second, our analysis shows that while image-space diffusion contributes to geometric precision, latent-space diffusion is crucial for vivid color rendition. Based on this observation, StableDreamer introduces a two-stage training strategy that effectively combines these aspects, resulting in high-fidelity 3D models. Third, we adopt an anisotropic 3D Gaussians representation, replacing Neural Radiance Fields (NeRFs), to enhance the overall quality, reduce memory usage during training, and accelerate rendering speeds, and better capture semi-transparent objects. StableDreamer reduces multi-face geometries, generates fine details, and converges stably.

SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation

Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.

Latent Space Disentanglement in Diffusion Transformers Enables Precise Zero-shot Semantic Editing

Diffusion Transformers (DiTs) have recently achieved remarkable success in text-guided image generation. In image editing, DiTs project text and image inputs to a joint latent space, from which they decode and synthesize new images. However, it remains largely unexplored how multimodal information collectively forms this joint space and how they guide the semantics of the synthesized images. In this paper, we investigate the latent space of DiT models and uncover two key properties: First, DiT's latent space is inherently semantically disentangled, where different semantic attributes can be controlled by specific editing directions. Second, consistent semantic editing requires utilizing the entire joint latent space, as neither encoded image nor text alone contains enough semantic information. We show that these editing directions can be obtained directly from text prompts, enabling precise semantic control without additional training or mask annotations. Based on these insights, we propose a simple yet effective Encode-Identify-Manipulate (EIM) framework for zero-shot fine-grained image editing. Specifically, we first encode both the given source image and the text prompt that describes the image, to obtain the joint latent embedding. Then, using our proposed Hessian Score Distillation Sampling (HSDS) method, we identify editing directions that control specific target attributes while preserving other image features. These directions are guided by text prompts and used to manipulate the latent embeddings. Moreover, we propose a new metric to quantify the disentanglement degree of the latent space of diffusion models. Extensive experiment results on our new curated benchmark dataset and analysis demonstrate DiT's disentanglement properties and effectiveness of the EIM framework.

Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance

Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.

Discovering Interpretable Directions in the Semantic Latent Space of Diffusion Models

Denoising Diffusion Models (DDMs) have emerged as a strong competitor to Generative Adversarial Networks (GANs). However, despite their widespread use in image synthesis and editing applications, their latent space is still not as well understood. Recently, a semantic latent space for DDMs, coined `h-space', was shown to facilitate semantic image editing in a way reminiscent of GANs. The h-space is comprised of the bottleneck activations in the DDM's denoiser across all timesteps of the diffusion process. In this paper, we explore the properties of h-space and propose several novel methods for finding meaningful semantic directions within it. We start by studying unsupervised methods for revealing interpretable semantic directions in pretrained DDMs. Specifically, we show that global latent directions emerge as the principal components in the latent space. Additionally, we provide a novel method for discovering image-specific semantic directions by spectral analysis of the Jacobian of the denoiser w.r.t. the latent code. Next, we extend the analysis by finding directions in a supervised fashion in unconditional DDMs. We demonstrate how such directions can be found by relying on either a labeled data set of real images or by annotating generated samples with a domain-specific attribute classifier. We further show how to semantically disentangle the found direction by simple linear projection. Our approaches are applicable without requiring any architectural modifications, text-based guidance, CLIP-based optimization, or model fine-tuning.

Image Super-resolution Via Latent Diffusion: A Sampling-space Mixture Of Experts And Frequency-augmented Decoder Approach

The recent use of diffusion prior, enhanced by pre-trained text-image models, has markedly elevated the performance of image super-resolution (SR). To alleviate the huge computational cost required by pixel-based diffusion SR, latent-based methods utilize a feature encoder to transform the image and then implement the SR image generation in a compact latent space. Nevertheless, there are two major issues that limit the performance of latent-based diffusion. First, the compression of latent space usually causes reconstruction distortion. Second, huge computational cost constrains the parameter scale of the diffusion model. To counteract these issues, we first propose a frequency compensation module that enhances the frequency components from latent space to pixel space. The reconstruction distortion (especially for high-frequency information) can be significantly decreased. Then, we propose to use Sample-Space Mixture of Experts (SS-MoE) to achieve more powerful latent-based SR, which steadily improves the capacity of the model without a significant increase in inference costs. These carefully crafted designs contribute to performance improvements in largely explored 4x blind super-resolution benchmarks and extend to large magnification factors, i.e., 8x image SR benchmarks. The code is available at https://github.com/amandaluof/moe_sr.

$λ$-ECLIPSE: Multi-Concept Personalized Text-to-Image Diffusion Models by Leveraging CLIP Latent Space

Despite the recent advances in personalized text-to-image (P-T2I) generative models, subject-driven T2I remains challenging. The primary bottlenecks include 1) Intensive training resource requirements, 2) Hyper-parameter sensitivity leading to inconsistent outputs, and 3) Balancing the intricacies of novel visual concept and composition alignment. We start by re-iterating the core philosophy of T2I diffusion models to address the above limitations. Predominantly, contemporary subject-driven T2I approaches hinge on Latent Diffusion Models (LDMs), which facilitate T2I mapping through cross-attention layers. While LDMs offer distinct advantages, P-T2I methods' reliance on the latent space of these diffusion models significantly escalates resource demands, leading to inconsistent results and necessitating numerous iterations for a single desired image. Recently, ECLIPSE has demonstrated a more resource-efficient pathway for training UnCLIP-based T2I models, circumventing the need for diffusion text-to-image priors. Building on this, we introduce lambda-ECLIPSE. Our method illustrates that effective P-T2I does not necessarily depend on the latent space of diffusion models. lambda-ECLIPSE achieves single, multi-subject, and edge-guided T2I personalization with just 34M parameters and is trained on a mere 74 GPU hours using 1.6M image-text interleaved data. Through extensive experiments, we also establish that lambda-ECLIPSE surpasses existing baselines in composition alignment while preserving concept alignment performance, even with significantly lower resource utilization.

NoiseCLR: A Contrastive Learning Approach for Unsupervised Discovery of Interpretable Directions in Diffusion Models

Generative models have been very popular in the recent years for their image generation capabilities. GAN-based models are highly regarded for their disentangled latent space, which is a key feature contributing to their success in controlled image editing. On the other hand, diffusion models have emerged as powerful tools for generating high-quality images. However, the latent space of diffusion models is not as thoroughly explored or understood. Existing methods that aim to explore the latent space of diffusion models usually relies on text prompts to pinpoint specific semantics. However, this approach may be restrictive in areas such as art, fashion, or specialized fields like medicine, where suitable text prompts might not be available or easy to conceive thus limiting the scope of existing work. In this paper, we propose an unsupervised method to discover latent semantics in text-to-image diffusion models without relying on text prompts. Our method takes a small set of unlabeled images from specific domains, such as faces or cats, and a pre-trained diffusion model, and discovers diverse semantics in unsupervised fashion using a contrastive learning objective. Moreover, the learned directions can be applied simultaneously, either within the same domain (such as various types of facial edits) or across different domains (such as applying cat and face edits within the same image) without interfering with each other. Our extensive experiments show that our method achieves highly disentangled edits, outperforming existing approaches in both diffusion-based and GAN-based latent space editing methods.

Denoising as Adaptation: Noise-Space Domain Adaptation for Image Restoration

Although learning-based image restoration methods have made significant progress, they still struggle with limited generalization to real-world scenarios due to the substantial domain gap caused by training on synthetic data. Existing methods address this issue by improving data synthesis pipelines, estimating degradation kernels, employing deep internal learning, and performing domain adaptation and regularization. Previous domain adaptation methods have sought to bridge the domain gap by learning domain-invariant knowledge in either feature or pixel space. However, these techniques often struggle to extend to low-level vision tasks within a stable and compact framework. In this paper, we show that it is possible to perform domain adaptation via the noise space using diffusion models. In particular, by leveraging the unique property of how auxiliary conditional inputs influence the multi-step denoising process, we derive a meaningful diffusion loss that guides the restoration model in progressively aligning both restored synthetic and real-world outputs with a target clean distribution. We refer to this method as denoising as adaptation. To prevent shortcuts during joint training, we present crucial strategies such as channel-shuffling layer and residual-swapping contrastive learning in the diffusion model. They implicitly blur the boundaries between conditioned synthetic and real data and prevent the reliance of the model on easily distinguishable features. Experimental results on three classical image restoration tasks, namely denoising, deblurring, and deraining, demonstrate the effectiveness of the proposed method.

RotationDrag: Point-based Image Editing with Rotated Diffusion Features

A precise and user-friendly manipulation of image content while preserving image fidelity has always been crucial to the field of image editing. Thanks to the power of generative models, recent point-based image editing methods allow users to interactively change the image content with high generalizability by clicking several control points. But the above mentioned editing process is usually based on the assumption that features stay constant in the motion supervision step from initial to target points. In this work, we conduct a comprehensive investigation in the feature space of diffusion models, and find that features change acutely under in-plane rotation. Based on this, we propose a novel approach named RotationDrag, which significantly improves point-based image editing performance when users intend to in-plane rotate the image content. Our method tracks handle points more precisely by utilizing the feature map of the rotated images, thus ensuring precise optimization and high image fidelity. Furthermore, we build a in-plane rotation focused benchmark called RotateBench, the first benchmark to evaluate the performance of point-based image editing method under in-plane rotation scenario on both real images and generated images. A thorough user study demonstrates the superior capability in accomplishing in-plane rotation that users intend to achieve, comparing the DragDiffusion baseline and other existing diffusion-based methods. See the project page https://github.com/Tony-Lowe/RotationDrag for code and experiment results.

DiffSynth: Latent In-Iteration Deflickering for Realistic Video Synthesis

In recent years, diffusion models have emerged as the most powerful approach in image synthesis. However, applying these models directly to video synthesis presents challenges, as it often leads to noticeable flickering contents. Although recently proposed zero-shot methods can alleviate flicker to some extent, we still struggle to generate coherent videos. In this paper, we propose DiffSynth, a novel approach that aims to convert image synthesis pipelines to video synthesis pipelines. DiffSynth consists of two key components: a latent in-iteration deflickering framework and a video deflickering algorithm. The latent in-iteration deflickering framework applies video deflickering to the latent space of diffusion models, effectively preventing flicker accumulation in intermediate steps. Additionally, we propose a video deflickering algorithm, named patch blending algorithm, that remaps objects in different frames and blends them together to enhance video consistency. One of the notable advantages of DiffSynth is its general applicability to various video synthesis tasks, including text-guided video stylization, fashion video synthesis, image-guided video stylization, video restoring, and 3D rendering. In the task of text-guided video stylization, we make it possible to synthesize high-quality videos without cherry-picking. The experimental results demonstrate the effectiveness of DiffSynth. All videos can be viewed on our project page. Source codes will also be released.

Elucidating The Design Space of Classifier-Guided Diffusion Generation

Guidance in conditional diffusion generation is of great importance for sample quality and controllability. However, existing guidance schemes are to be desired. On one hand, mainstream methods such as classifier guidance and classifier-free guidance both require extra training with labeled data, which is time-consuming and unable to adapt to new conditions. On the other hand, training-free methods such as universal guidance, though more flexible, have yet to demonstrate comparable performance. In this work, through a comprehensive investigation into the design space, we show that it is possible to achieve significant performance improvements over existing guidance schemes by leveraging off-the-shelf classifiers in a training-free fashion, enjoying the best of both worlds. Employing calibration as a general guideline, we propose several pre-conditioning techniques to better exploit pretrained off-the-shelf classifiers for guiding diffusion generation. Extensive experiments on ImageNet validate our proposed method, showing that state-of-the-art diffusion models (DDPM, EDM, DiT) can be further improved (up to 20%) using off-the-shelf classifiers with barely any extra computational cost. With the proliferation of publicly available pretrained classifiers, our proposed approach has great potential and can be readily scaled up to text-to-image generation tasks. The code is available at https://github.com/AlexMaOLS/EluCD/tree/main.

Navigating the Design Space of Equivariant Diffusion-Based Generative Models for De Novo 3D Molecule Generation

Deep generative diffusion models are a promising avenue for 3D de novo molecular design in materials science and drug discovery. However, their utility is still limited by suboptimal performance on large molecular structures and limited training data. To address this gap, we explore the design space of E(3)-equivariant diffusion models, focusing on previously unexplored areas. Our extensive comparative analysis evaluates the interplay between continuous and discrete state spaces. From this investigation, we present the EQGAT-diff model, which consistently outperforms established models for the QM9 and GEOM-Drugs datasets. Significantly, EQGAT-diff takes continuous atom positions, while chemical elements and bond types are categorical and uses time-dependent loss weighting, substantially increasing training convergence, the quality of generated samples, and inference time. We also showcase that including chemically motivated additional features like hybridization states in the diffusion process enhances the validity of generated molecules. To further strengthen the applicability of diffusion models to limited training data, we investigate the transferability of EQGAT-diff trained on the large PubChem3D dataset with implicit hydrogen atoms to target different data distributions. Fine-tuning EQGAT-diff for just a few iterations shows an efficient distribution shift, further improving performance throughout data sets. Finally, we test our model on the Crossdocked data set for structure-based de novo ligand generation, underlining the importance of our findings showing state-of-the-art performance on Vina docking scores.

WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space

Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.

LDMol: Text-Conditioned Molecule Diffusion Model Leveraging Chemically Informative Latent Space

With the emergence of diffusion models as the frontline of generative models, many researchers have proposed molecule generation techniques using conditional diffusion models. However, due to the fundamental nature of a molecule, which carries highly entangled correlations within a small number of atoms and bonds, it becomes difficult for a model to connect raw data with the conditions when the conditions become more complex as natural language. To address this, here we present a novel latent diffusion model dubbed LDMol, which enables a natural text-conditioned molecule generation. Specifically, LDMol is composed of three building blocks: a molecule encoder that produces a chemically informative feature space, a natural language-conditioned latent diffusion model using a Diffusion Transformer (DiT), and an autoregressive decoder for molecule re. In particular, recognizing that multiple SMILES notations can represent the same molecule, we employ a contrastive learning strategy to extract the chemical informative feature space. LDMol not only beats the existing baselines on the text-to-molecule generation benchmark but is also capable of zero-shot inference with unseen scenarios. Furthermore, we show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-driven molecule editing, demonstrating its versatility as a diffusion model.

Beyond the Visible: Jointly Attending to Spectral and Spatial Dimensions with HSI-Diffusion for the FINCH Spacecraft

Satellite remote sensing missions have gained popularity over the past fifteen years due to their ability to cover large swaths of land at regular intervals, making them ideal for monitoring environmental trends. The FINCH mission, a 3U+ CubeSat equipped with a hyperspectral camera, aims to monitor crop residue cover in agricultural fields. Although hyperspectral imaging captures both spectral and spatial information, it is prone to various types of noise, including random noise, stripe noise, and dead pixels. Effective denoising of these images is crucial for downstream scientific tasks. Traditional methods, including hand-crafted techniques encoding strong priors, learned 2D image denoising methods applied across different hyperspectral bands, or diffusion generative models applied independently on bands, often struggle with varying noise strengths across spectral bands, leading to significant spectral distortion. This paper presents a novel approach to hyperspectral image denoising using latent diffusion models that integrate spatial and spectral information. We particularly do so by building a 3D diffusion model and presenting a 3-stage training approach on real and synthetically crafted datasets. The proposed method preserves image structure while reducing noise. Evaluations on both popular hyperspectral denoising datasets and synthetically crafted datasets for the FINCH mission demonstrate the effectiveness of this approach.

DreamSpace: Dreaming Your Room Space with Text-Driven Panoramic Texture Propagation

Diffusion-based methods have achieved prominent success in generating 2D media. However, accomplishing similar proficiencies for scene-level mesh texturing in 3D spatial applications, e.g., XR/VR, remains constrained, primarily due to the intricate nature of 3D geometry and the necessity for immersive free-viewpoint rendering. In this paper, we propose a novel indoor scene texturing framework, which delivers text-driven texture generation with enchanting details and authentic spatial coherence. The key insight is to first imagine a stylized 360{\deg} panoramic texture from the central viewpoint of the scene, and then propagate it to the rest areas with inpainting and imitating techniques. To ensure meaningful and aligned textures to the scene, we develop a novel coarse-to-fine panoramic texture generation approach with dual texture alignment, which both considers the geometry and texture cues of the captured scenes. To survive from cluttered geometries during texture propagation, we design a separated strategy, which conducts texture inpainting in confidential regions and then learns an implicit imitating network to synthesize textures in occluded and tiny structural areas. Extensive experiments and the immersive VR application on real-world indoor scenes demonstrate the high quality of the generated textures and the engaging experience on VR headsets. Project webpage: https://ybbbbt.com/publication/dreamspace

DiMSUM: Diffusion Mamba -- A Scalable and Unified Spatial-Frequency Method for Image Generation

We introduce a novel state-space architecture for diffusion models, effectively harnessing spatial and frequency information to enhance the inductive bias towards local features in input images for image generation tasks. While state-space networks, including Mamba, a revolutionary advancement in recurrent neural networks, typically scan input sequences from left to right, they face difficulties in designing effective scanning strategies, especially in the processing of image data. Our method demonstrates that integrating wavelet transformation into Mamba enhances the local structure awareness of visual inputs and better captures long-range relations of frequencies by disentangling them into wavelet subbands, representing both low- and high-frequency components. These wavelet-based outputs are then processed and seamlessly fused with the original Mamba outputs through a cross-attention fusion layer, combining both spatial and frequency information to optimize the order awareness of state-space models which is essential for the details and overall quality of image generation. Besides, we introduce a globally-shared transformer to supercharge the performance of Mamba, harnessing its exceptional power to capture global relationships. Through extensive experiments on standard benchmarks, our method demonstrates superior results compared to DiT and DIFFUSSM, achieving faster training convergence and delivering high-quality outputs. The codes and pretrained models are released at https://github.com/VinAIResearch/DiMSUM.git.

An Edit Friendly DDPM Noise Space: Inversion and Manipulations

Denoising diffusion probabilistic models (DDPMs) employ a sequence of white Gaussian noise samples to generate an image. In analogy with GANs, those noise maps could be considered as the latent code associated with the generated image. However, this native noise space does not possess a convenient structure, and is thus challenging to work with in editing tasks. Here, we propose an alternative latent noise space for DDPM that enables a wide range of editing operations via simple means, and present an inversion method for extracting these edit-friendly noise maps for any given image (real or synthetically generated). As opposed to the native DDPM noise space, the edit-friendly noise maps do not have a standard normal distribution and are not statistically independent across timesteps. However, they allow perfect reconstruction of any desired image, and simple transformations on them translate into meaningful manipulations of the output image (e.g., shifting, color edits). Moreover, in text-conditional models, fixing those noise maps while changing the text prompt, modifies semantics while retaining structure. We illustrate how this property enables text-based editing of real images via the diverse DDPM sampling scheme (in contrast to the popular non-diverse DDIM inversion). We also show how it can be used within existing diffusion-based editing methods to improve their quality and diversity.

Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding

Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences. However, rather than merely generating designs that are natural, we often aim to optimize downstream reward functions while preserving the naturalness of these design spaces. Existing methods for achieving this goal often require ``differentiable'' proxy models (e.g., classifier guidance or DPS) or involve computationally expensive fine-tuning of diffusion models (e.g., classifier-free guidance, RL-based fine-tuning). In our work, we propose a new method to address these challenges. Our algorithm is an iterative sampling method that integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future, into the standard inference procedure of pre-trained diffusion models. Notably, our approach avoids fine-tuning generative models and eliminates the need to construct differentiable models. This enables us to (1) directly utilize non-differentiable features/reward feedback, commonly used in many scientific domains, and (2) apply our method to recent discrete diffusion models in a principled way. Finally, we demonstrate the effectiveness of our algorithm across several domains, including image generation, molecule generation, and DNA/RNA sequence generation. The code is available at https://github.com/masa-ue/SVDD{https://github.com/masa-ue/SVDD}.

Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps

Generative models have made significant impacts across various domains, largely due to their ability to scale during training by increasing data, computational resources, and model size, a phenomenon characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in Large Language Models (LLMs), revealing how performance can further improve with additional computation during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time computation via the number of denoising steps, although the performance gains typically flatten after a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond increasing denoising steps and investigate how the generation performance can further improve with increased computation. Specifically, we consider a search problem aimed at identifying better noises for the diffusion sampling process. We structure the design space along two axes: the verifiers used to provide feedback, and the algorithms used to find better noise candidates. Through extensive experiments on class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing inference-time compute leads to substantial improvements in the quality of samples generated by diffusion models, and with the complicated nature of images, combinations of the components in the framework can be specifically chosen to conform with different application scenario.

Aligning Diffusion Models with Noise-Conditioned Perception

Recent advancements in human preference optimization, initially developed for Language Models (LMs), have shown promise for text-to-image Diffusion Models, enhancing prompt alignment, visual appeal, and user preference. Unlike LMs, Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception, leading to slower and less efficient training during the preference alignment stage. We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues. Our approach involves fine-tuning Stable Diffusion 1.5 and XL using Direct Preference Optimization (DPO), Contrastive Preference Optimization (CPO), and supervised fine-tuning (SFT) within this embedding space. This method significantly outperforms standard latent-space implementations across various metrics, including quality and computational cost. For SDXL, our approach provides 60.8\% general preference, 62.2\% visual appeal, and 52.1\% prompt following against original open-sourced SDXL-DPO on the PartiPrompts dataset, while significantly reducing compute. Our approach not only improves the efficiency and quality of human preference alignment for diffusion models but is also easily integrable with other optimization techniques. The training code and LoRA weights will be available here: https://huggingface.co./alexgambashidze/SDXL\_NCP-DPO\_v0.1

Binary Latent Diffusion

In this paper, we show that a binary latent space can be explored for compact yet expressive image representations. We model the bi-directional mappings between an image and the corresponding latent binary representation by training an auto-encoder with a Bernoulli encoding distribution. On the one hand, the binary latent space provides a compact discrete image representation of which the distribution can be modeled more efficiently than pixels or continuous latent representations. On the other hand, we now represent each image patch as a binary vector instead of an index of a learned cookbook as in discrete image representations with vector quantization. In this way, we obtain binary latent representations that allow for better image quality and high-resolution image representations without any multi-stage hierarchy in the latent space. In this binary latent space, images can now be generated effectively using a binary latent diffusion model tailored specifically for modeling the prior over the binary image representations. We present both conditional and unconditional image generation experiments with multiple datasets, and show that the proposed method performs comparably to state-of-the-art methods while dramatically improving the sampling efficiency to as few as 16 steps without using any test-time acceleration. The proposed framework can also be seamlessly scaled to 1024 times 1024 high-resolution image generation without resorting to latent hierarchy or multi-stage refinements.

On Distillation of Guided Diffusion Models

Classifier-free guided diffusion models have recently been shown to be highly effective at high-resolution image generation, and they have been widely used in large-scale diffusion frameworks including DALLE-2, Stable Diffusion and Imagen. However, a downside of classifier-free guided diffusion models is that they are computationally expensive at inference time since they require evaluating two diffusion models, a class-conditional model and an unconditional model, tens to hundreds of times. To deal with this limitation, we propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from: Given a pre-trained classifier-free guided model, we first learn a single model to match the output of the combined conditional and unconditional models, and then we progressively distill that model to a diffusion model that requires much fewer sampling steps. For standard diffusion models trained on the pixel-space, our approach is able to generate images visually comparable to that of the original model using as few as 4 sampling steps on ImageNet 64x64 and CIFAR-10, achieving FID/IS scores comparable to that of the original model while being up to 256 times faster to sample from. For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps, accelerating inference by at least 10-fold compared to existing methods on ImageNet 256x256 and LAION datasets. We further demonstrate the effectiveness of our approach on text-guided image editing and inpainting, where our distilled model is able to generate high-quality results using as few as 2-4 denoising steps.

Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation

The integration of Vector Quantised Variational AutoEncoder (VQ-VAE) with autoregressive models as generation part has yielded high-quality results on image generation. However, the autoregressive models will strictly follow the progressive scanning order during the sampling phase. This leads the existing VQ series models to hardly escape the trap of lacking global information. Denoising Diffusion Probabilistic Models (DDPM) in the continuous domain have shown a capability to capture the global context, while generating high-quality images. In the discrete state space, some works have demonstrated the potential to perform text generation and low resolution image generation. We show that with the help of a content-rich discrete visual codebook from VQ-VAE, the discrete diffusion model can also generate high fidelity images with global context, which compensates for the deficiency of the classical autoregressive model along pixel space. Meanwhile, the integration of the discrete VAE with the diffusion model resolves the drawback of conventional autoregressive models being oversized, and the diffusion model which demands excessive time in the sampling process when generating images. It is found that the quality of the generated images is heavily dependent on the discrete visual codebook. Extensive experiments demonstrate that the proposed Vector Quantised Discrete Diffusion Model (VQ-DDM) is able to achieve comparable performance to top-tier methods with low complexity. It also demonstrates outstanding advantages over other vectors quantised with autoregressive models in terms of image inpainting tasks without additional training.

Vector Quantized Diffusion Model for Text-to-Image Synthesis

We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.

DMCVR: Morphology-Guided Diffusion Model for 3D Cardiac Volume Reconstruction

Accurate 3D cardiac reconstruction from cine magnetic resonance imaging (cMRI) is crucial for improved cardiovascular disease diagnosis and understanding of the heart's motion. However, current cardiac MRI-based reconstruction technology used in clinical settings is 2D with limited through-plane resolution, resulting in low-quality reconstructed cardiac volumes. To better reconstruct 3D cardiac volumes from sparse 2D image stacks, we propose a morphology-guided diffusion model for 3D cardiac volume reconstruction, DMCVR, that synthesizes high-resolution 2D images and corresponding 3D reconstructed volumes. Our method outperforms previous approaches by conditioning the cardiac morphology on the generative model, eliminating the time-consuming iterative optimization process of the latent code, and improving generation quality. The learned latent spaces provide global semantics, local cardiac morphology and details of each 2D cMRI slice with highly interpretable value to reconstruct 3D cardiac shape. Our experiments show that DMCVR is highly effective in several aspects, such as 2D generation and 3D reconstruction performance. With DMCVR, we can produce high-resolution 3D cardiac MRI reconstructions, surpassing current techniques. Our proposed framework has great potential for improving the accuracy of cardiac disease diagnosis and treatment planning. Code can be accessed at https://github.com/hexiaoxiao-cs/DMCVR.

When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for Personalized Image Generation

Text-to-image diffusion models have remarkably excelled in producing diverse, high-quality, and photo-realistic images. This advancement has spurred a growing interest in incorporating specific identities into generated content. Most current methods employ an inversion approach to embed a target visual concept into the text embedding space using a single reference image. However, the newly synthesized faces either closely resemble the reference image in terms of facial attributes, such as expression, or exhibit a reduced capacity for identity preservation. Text descriptions intended to guide the facial attributes of the synthesized face may fall short, owing to the intricate entanglement of identity information with identity-irrelevant facial attributes derived from the reference image. To address these issues, we present the novel use of the extended StyleGAN embedding space W_+, to achieve enhanced identity preservation and disentanglement for diffusion models. By aligning this semantically meaningful human face latent space with text-to-image diffusion models, we succeed in maintaining high fidelity in identity preservation, coupled with the capacity for semantic editing. Additionally, we propose new training objectives to balance the influences of both prompt and identity conditions, ensuring that the identity-irrelevant background remains unaffected during facial attribute modifications. Extensive experiments reveal that our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions in diverse settings. Our source code will be available at https://github.com/csxmli2016/w-plus-adapter.

Rethinking Diffusion for Text-Driven Human Motion Generation

Since 2023, Vector Quantization (VQ)-based discrete generation methods have rapidly dominated human motion generation, primarily surpassing diffusion-based continuous generation methods in standard performance metrics. However, VQ-based methods have inherent limitations. Representing continuous motion data as limited discrete tokens leads to inevitable information loss, reduces the diversity of generated motions, and restricts their ability to function effectively as motion priors or generation guidance. In contrast, the continuous space generation nature of diffusion-based methods makes them well-suited to address these limitations and with even potential for model scalability. In this work, we systematically investigate why current VQ-based methods perform well and explore the limitations of existing diffusion-based methods from the perspective of motion data representation and distribution. Drawing on these insights, we preserve the inherent strengths of a diffusion-based human motion generation model and gradually optimize it with inspiration from VQ-based approaches. Our approach introduces a human motion diffusion model enabled to perform bidirectional masked autoregression, optimized with a reformed data representation and distribution. Additionally, we also propose more robust evaluation methods to fairly assess different-based methods. Extensive experiments on benchmark human motion generation datasets demonstrate that our method excels previous methods and achieves state-of-the-art performances.

Causal Diffusion Autoencoders: Toward Counterfactual Generation via Diffusion Probabilistic Models

Diffusion probabilistic models (DPMs) have become the state-of-the-art in high-quality image generation. However, DPMs have an arbitrary noisy latent space with no interpretable or controllable semantics. Although there has been significant research effort to improve image sample quality, there is little work on representation-controlled generation using diffusion models. Specifically, causal modeling and controllable counterfactual generation using DPMs is an underexplored area. In this work, we propose CausalDiffAE, a diffusion-based causal representation learning framework to enable counterfactual generation according to a specified causal model. Our key idea is to use an encoder to extract high-level semantically meaningful causal variables from high-dimensional data and model stochastic variation using reverse diffusion. We propose a causal encoding mechanism that maps high-dimensional data to causally related latent factors and parameterize the causal mechanisms among latent factors using neural networks. To enforce the disentanglement of causal variables, we formulate a variational objective and leverage auxiliary label information in a prior to regularize the latent space. We propose a DDIM-based counterfactual generation procedure subject to do-interventions. Finally, to address the limited label supervision scenario, we also study the application of CausalDiffAE when a part of the training data is unlabeled, which also enables granular control over the strength of interventions in generating counterfactuals during inference. We empirically show that CausalDiffAE learns a disentangled latent space and is capable of generating high-quality counterfactual images.

Multiscale Structure Guided Diffusion for Image Deblurring

Diffusion Probabilistic Models (DPMs) have recently been employed for image deblurring, formulated as an image-conditioned generation process that maps Gaussian noise to the high-quality image, conditioned on the blurry input. Image-conditioned DPMs (icDPMs) have shown more realistic results than regression-based methods when trained on pairwise in-domain data. However, their robustness in restoring images is unclear when presented with out-of-domain images as they do not impose specific degradation models or intermediate constraints. To this end, we introduce a simple yet effective multiscale structure guidance as an implicit bias that informs the icDPM about the coarse structure of the sharp image at the intermediate layers. This guided formulation leads to a significant improvement of the deblurring results, particularly on unseen domain. The guidance is extracted from the latent space of a regression network trained to predict the clean-sharp target at multiple lower resolutions, thus maintaining the most salient sharp structures. With both the blurry input and multiscale guidance, the icDPM model can better understand the blur and recover the clean image. We evaluate a single-dataset trained model on diverse datasets and demonstrate more robust deblurring results with fewer artifacts on unseen data. Our method outperforms existing baselines, achieving state-of-the-art perceptual quality while keeping competitive distortion metrics.

SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D Object Pose Estimation

In this paper, we introduce an SE(3) diffusion model-based point cloud registration framework for 6D object pose estimation in real-world scenarios. Our approach formulates the 3D registration task as a denoising diffusion process, which progressively refines the pose of the source point cloud to obtain a precise alignment with the model point cloud. Training our framework involves two operations: An SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process gradually perturbs the optimal rigid transformation of a pair of point clouds by continuously injecting noise (perturbation transformation). By contrast, the SE(3) reverse process focuses on learning a denoising network that refines the noisy transformation step-by-step, bringing it closer to the optimal transformation for accurate pose estimation. Unlike standard diffusion models used in linear Euclidean spaces, our diffusion model operates on the SE(3) manifold. This requires exploiting the linear Lie algebra se(3) associated with SE(3) to constrain the transformation transitions during the diffusion and reverse processes. Additionally, to effectively train our denoising network, we derive a registration-specific variational lower bound as the optimization objective for model learning. Furthermore, we show that our denoising network can be constructed with a surrogate registration model, making our approach applicable to different deep registration networks. Extensive experiments demonstrate that our diffusion registration framework presents outstanding pose estimation performance on the real-world TUD-L, LINEMOD, and Occluded-LINEMOD datasets.

LTX-Video: Realtime Video Latent Diffusion

We introduce LTX-Video, a transformer-based latent diffusion model that adopts a holistic approach to video generation by seamlessly integrating the responsibilities of the Video-VAE and the denoising transformer. Unlike existing methods, which treat these components as independent, LTX-Video aims to optimize their interaction for improved efficiency and quality. At its core is a carefully designed Video-VAE that achieves a high compression ratio of 1:192, with spatiotemporal downscaling of 32 x 32 x 8 pixels per token, enabled by relocating the patchifying operation from the transformer's input to the VAE's input. Operating in this highly compressed latent space enables the transformer to efficiently perform full spatiotemporal self-attention, which is essential for generating high-resolution videos with temporal consistency. However, the high compression inherently limits the representation of fine details. To address this, our VAE decoder is tasked with both latent-to-pixel conversion and the final denoising step, producing the clean result directly in pixel space. This approach preserves the ability to generate fine details without incurring the runtime cost of a separate upsampling module. Our model supports diverse use cases, including text-to-video and image-to-video generation, with both capabilities trained simultaneously. It achieves faster-than-real-time generation, producing 5 seconds of 24 fps video at 768x512 resolution in just 2 seconds on an Nvidia H100 GPU, outperforming all existing models of similar scale. The source code and pre-trained models are publicly available, setting a new benchmark for accessible and scalable video generation.

Efficient Video Diffusion Models via Content-Frame Motion-Latent Decomposition

Video diffusion models have recently made great progress in generation quality, but are still limited by the high memory and computational requirements. This is because current video diffusion models often attempt to process high-dimensional videos directly. To tackle this issue, we propose content-motion latent diffusion model (CMD), a novel efficient extension of pretrained image diffusion models for video generation. Specifically, we propose an autoencoder that succinctly encodes a video as a combination of a content frame (like an image) and a low-dimensional motion latent representation. The former represents the common content, and the latter represents the underlying motion in the video, respectively. We generate the content frame by fine-tuning a pretrained image diffusion model, and we generate the motion latent representation by training a new lightweight diffusion model. A key innovation here is the design of a compact latent space that can directly utilizes a pretrained image diffusion model, which has not been done in previous latent video diffusion models. This leads to considerably better quality generation and reduced computational costs. For instance, CMD can sample a video 7.7times faster than prior approaches by generating a video of 512times1024 resolution and length 16 in 3.1 seconds. Moreover, CMD achieves an FVD score of 212.7 on WebVid-10M, 27.3% better than the previous state-of-the-art of 292.4.

LD-ZNet: A Latent Diffusion Approach for Text-Based Image Segmentation

Large-scale pre-training tasks like image classification, captioning, or self-supervised techniques do not incentivize learning the semantic boundaries of objects. However, recent generative foundation models built using text-based latent diffusion techniques may learn semantic boundaries. This is because they have to synthesize intricate details about all objects in an image based on a text description. Therefore, we present a technique for segmenting real and AI-generated images using latent diffusion models (LDMs) trained on internet-scale datasets. First, we show that the latent space of LDMs (z-space) is a better input representation compared to other feature representations like RGB images or CLIP encodings for text-based image segmentation. By training the segmentation models on the latent z-space, which creates a compressed representation across several domains like different forms of art, cartoons, illustrations, and photographs, we are also able to bridge the domain gap between real and AI-generated images. We show that the internal features of LDMs contain rich semantic information and present a technique in the form of LD-ZNet to further boost the performance of text-based segmentation. Overall, we show up to 6% improvement over standard baselines for text-to-image segmentation on natural images. For AI-generated imagery, we show close to 20% improvement compared to state-of-the-art techniques. The project is available at https://koutilya-pnvr.github.io/LD-ZNet/.

Coherent and Multi-modality Image Inpainting via Latent Space Optimization

With the advancements in denoising diffusion probabilistic models (DDPMs), image inpainting has significantly evolved from merely filling information based on nearby regions to generating content conditioned on various prompts such as text, exemplar images, and sketches. However, existing methods, such as model fine-tuning and simple concatenation of latent vectors, often result in generation failures due to overfitting and inconsistency between the inpainted region and the background. In this paper, we argue that the current large diffusion models are sufficiently powerful to generate realistic images without further tuning. Hence, we introduce PILOT (inPainting vIa Latent OpTimization), an optimization approach grounded on a novel semantic centralization and background preservation loss. Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background. Furthermore, we propose a strategy to balance optimization expense and image quality, significantly enhancing generation efficiency. Our method seamlessly integrates with any pre-trained model, including ControlNet and DreamBooth, making it suitable for deployment in multi-modal editing tools. Our qualitative and quantitative evaluations demonstrate that PILOT outperforms existing approaches by generating more coherent, diverse, and faithful inpainted regions in response to provided prompts.

Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder

Super-resolution (SR) and image generation are important tasks in computer vision and are widely adopted in real-world applications. Most existing methods, however, generate images only at fixed-scale magnification and suffer from over-smoothing and artifacts. Additionally, they do not offer enough diversity of output images nor image consistency at different scales. Most relevant work applied Implicit Neural Representation (INR) to the denoising diffusion model to obtain continuous-resolution yet diverse and high-quality SR results. Since this model operates in the image space, the larger the resolution of image is produced, the more memory and inference time is required, and it also does not maintain scale-specific consistency. We propose a novel pipeline that can super-resolve an input image or generate from a random noise a novel image at arbitrary scales. The method consists of a pretrained auto-encoder, a latent diffusion model, and an implicit neural decoder, and their learning strategies. The proposed method adopts diffusion processes in a latent space, thus efficient, yet aligned with output image space decoded by MLPs at arbitrary scales. More specifically, our arbitrary-scale decoder is designed by the symmetric decoder w/o up-scaling from the pretrained auto-encoder, and Local Implicit Image Function (LIIF) in series. The latent diffusion process is learnt by the denoising and the alignment losses jointly. Errors in output images are backpropagated via the fixed decoder, improving the quality of output images. In the extensive experiments using multiple public benchmarks on the two tasks i.e. image super-resolution and novel image generation at arbitrary scales, the proposed method outperforms relevant methods in metrics of image quality, diversity and scale consistency. It is significantly better than the relevant prior-art in the inference speed and memory usage.

Surf-D: High-Quality Surface Generation for Arbitrary Topologies using Diffusion Models

In this paper, we present Surf-D, a novel method for generating high-quality 3D shapes as Surfaces with arbitrary topologies using Diffusion models. Specifically, we adopt Unsigned Distance Field (UDF) as the surface representation, as it excels in handling arbitrary topologies, enabling the generation of complex shapes. While the prior methods explored shape generation with different representations, they suffer from limited topologies and geometry details. Moreover, it's non-trivial to directly extend prior diffusion models to UDF because they lack spatial continuity due to the discrete volume structure. However, UDF requires accurate gradients for mesh extraction and learning. To tackle the issues, we first leverage a point-based auto-encoder to learn a compact latent space, which supports gradient querying for any input point through differentiation to effectively capture intricate geometry at a high resolution. Since the learning difficulty for various shapes can differ, a curriculum learning strategy is employed to efficiently embed various surfaces, enhancing the whole embedding process. With pretrained shape latent space, we employ a latent diffusion model to acquire the distribution of various shapes. Our approach demonstrates superior performance in shape generation across multiple modalities and conducts extensive experiments in unconditional generation, category conditional generation, 3D reconstruction from images, and text-to-shape tasks.

Priority-Centric Human Motion Generation in Discrete Latent Space

Text-to-motion generation is a formidable task, aiming to produce human motions that align with the input text while also adhering to human capabilities and physical laws. While there have been advancements in diffusion models, their application in discrete spaces remains underexplored. Current methods often overlook the varying significance of different motions, treating them uniformly. It is essential to recognize that not all motions hold the same relevance to a particular textual description. Some motions, being more salient and informative, should be given precedence during generation. In response, we introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM), which utilizes a Transformer-based VQ-VAE to derive a concise, discrete motion representation, incorporating a global self-attention mechanism and a regularization term to counteract code collapse. We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token within the entire motion sequence. This approach retains the most salient motions during the reverse diffusion process, leading to more semantically rich and varied motions. Additionally, we formulate two strategies to gauge the importance of motion tokens, drawing from both textual and visual indicators. Comprehensive experiments on the HumanML3D and KIT-ML datasets confirm that our model surpasses existing techniques in fidelity and diversity, particularly for intricate textual descriptions.

Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search

Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/

ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models

Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.

Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse Problems

Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method. Code is available at https://github.com/HJ-harry/DDS

Solving 3D Inverse Problems using Pre-trained 2D Diffusion Models

Diffusion models have emerged as the new state-of-the-art generative model with high quality samples, with intriguing properties such as mode coverage and high flexibility. They have also been shown to be effective inverse problem solvers, acting as the prior of the distribution, while the information of the forward model can be granted at the sampling stage. Nonetheless, as the generative process remains in the same high dimensional (i.e. identical to data dimension) space, the models have not been extended to 3D inverse problems due to the extremely high memory and computational cost. In this paper, we combine the ideas from the conventional model-based iterative reconstruction with the modern diffusion models, which leads to a highly effective method for solving 3D medical image reconstruction tasks such as sparse-view tomography, limited angle tomography, compressed sensing MRI from pre-trained 2D diffusion models. In essence, we propose to augment the 2D diffusion prior with a model-based prior in the remaining direction at test time, such that one can achieve coherent reconstructions across all dimensions. Our method can be run in a single commodity GPU, and establishes the new state-of-the-art, showing that the proposed method can perform reconstructions of high fidelity and accuracy even in the most extreme cases (e.g. 2-view 3D tomography). We further reveal that the generalization capacity of the proposed method is surprisingly high, and can be used to reconstruct volumes that are entirely different from the training dataset.

Denoising MCMC for Accelerating Diffusion-Based Generative Models

Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have 3.86 FID with approx 10 NFE and 2.63 FID with approx 20 NFE. On CelebA-HQ-256, we have 6.99 FID with approx 160 NFE, which beats the current best record of Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE. Code: https://github.com/1202kbs/DMCMC

Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.

MVPaint: Synchronized Multi-View Diffusion for Painting Anything 3D

Texturing is a crucial step in the 3D asset production workflow, which enhances the visual appeal and diversity of 3D assets. Despite recent advancements in Text-to-Texture (T2T) generation, existing methods often yield subpar results, primarily due to local discontinuities, inconsistencies across multiple views, and their heavy dependence on UV unwrapping outcomes. To tackle these challenges, we propose a novel generation-refinement 3D texturing framework called MVPaint, which can generate high-resolution, seamless textures while emphasizing multi-view consistency. MVPaint mainly consists of three key modules. 1) Synchronized Multi-view Generation (SMG). Given a 3D mesh model, MVPaint first simultaneously generates multi-view images by employing an SMG model, which leads to coarse texturing results with unpainted parts due to missing observations. 2) Spatial-aware 3D Inpainting (S3I). To ensure complete 3D texturing, we introduce the S3I method, specifically designed to effectively texture previously unobserved areas. 3) UV Refinement (UVR). Furthermore, MVPaint employs a UVR module to improve the texture quality in the UV space, which first performs a UV-space Super-Resolution, followed by a Spatial-aware Seam-Smoothing algorithm for revising spatial texturing discontinuities caused by UV unwrapping. Moreover, we establish two T2T evaluation benchmarks: the Objaverse T2T benchmark and the GSO T2T benchmark, based on selected high-quality 3D meshes from the Objaverse dataset and the entire GSO dataset, respectively. Extensive experimental results demonstrate that MVPaint surpasses existing state-of-the-art methods. Notably, MVPaint could generate high-fidelity textures with minimal Janus issues and highly enhanced cross-view consistency.

Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow

Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs. Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path. Its key components include: 1) using the diffusion form of flow-matching, 2) employing boldsymbol v-prediction, and 3) performing rectification (a.k.a. reflow). In this paper, we argue that the success of rectification primarily lies in using a pretrained diffusion model to obtain matched pairs of noise and samples, followed by retraining with these matched noise-sample pairs. Based on this, components 1) and 2) are unnecessary. Furthermore, we highlight that straightness is not an essential training target for rectification; rather, it is a specific case of flow-matching models. The more critical training target is to achieve a first-order approximate ODE path, which is inherently curved for models like DDPM and Sub-VP. Building on this insight, we propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models, rather than being restricted to flow-matching models. We validate our method on Stable Diffusion v1-5 and Stable Diffusion XL. Our method not only greatly simplifies the training procedure of rectified flow-based previous works (e.g., InstaFlow) but also achieves superior performance with even lower training cost. Our code is available at https://github.com/G-U-N/Rectified-Diffusion.

GeneOH Diffusion: Towards Generalizable Hand-Object Interaction Denoising via Denoising Diffusion

In this work, we tackle the challenging problem of denoising hand-object interactions (HOI). Given an erroneous interaction sequence, the objective is to refine the incorrect hand trajectory to remove interaction artifacts for a perceptually realistic sequence. This challenge involves intricate interaction noise, including unnatural hand poses and incorrect hand-object relations, alongside the necessity for robust generalization to new interactions and diverse noise patterns. We tackle those challenges through a novel approach, GeneOH Diffusion, incorporating two key designs: an innovative contact-centric HOI representation named GeneOH and a new domain-generalizable denoising scheme. The contact-centric representation GeneOH informatively parameterizes the HOI process, facilitating enhanced generalization across various HOI scenarios. The new denoising scheme consists of a canonical denoising model trained to project noisy data samples from a whitened noise space to a clean data manifold and a "denoising via diffusion" strategy which can handle input trajectories with various noise patterns by first diffusing them to align with the whitened noise space and cleaning via the canonical denoiser. Extensive experiments on four benchmarks with significant domain variations demonstrate the superior effectiveness of our method. GeneOH Diffusion also shows promise for various downstream applications. Project website: https://meowuu7.github.io/GeneOH-Diffusion/.

Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective

Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.

Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment

In this paper, we point out suboptimal noise-data mapping leads to slow training of diffusion models. During diffusion training, current methods diffuse each image across the entire noise space, resulting in a mixture of all images at every point in the noise layer. We emphasize that this random mixture of noise-data mapping complicates the optimization of the denoising function in diffusion models. Drawing inspiration from the immiscible phenomenon in physics, we propose Immiscible Diffusion, a simple and effective method to improve the random mixture of noise-data mapping. In physics, miscibility can vary according to various intermolecular forces. Thus, immiscibility means that the mixing of the molecular sources is distinguishable. Inspired by this, we propose an assignment-then-diffusion training strategy. Specifically, prior to diffusing the image data into noise, we assign diffusion target noise for the image data by minimizing the total image-noise pair distance in a mini-batch. The assignment functions analogously to external forces to separate the diffuse-able areas of images, thus mitigating the inherent difficulties in diffusion training. Our approach is remarkably simple, requiring only one line of code to restrict the diffuse-able area for each image while preserving the Gaussian distribution of noise. This ensures that each image is projected only to nearby noise. To address the high complexity of the assignment algorithm, we employ a quantized-assignment method to reduce the computational overhead to a negligible level. Experiments demonstrate that our method achieve up to 3x faster training for consistency models and DDIM on the CIFAR dataset, and up to 1.3x faster on CelebA datasets for consistency models. Besides, we conduct thorough analysis about the Immiscible Diffusion, which sheds lights on how it improves diffusion training speed while improving the fidelity.

Latent Diffusion Model for Medical Image Standardization and Enhancement

Computed tomography (CT) serves as an effective tool for lung cancer screening, diagnosis, treatment, and prognosis, providing a rich source of features to quantify temporal and spatial tumor changes. Nonetheless, the diversity of CT scanners and customized acquisition protocols can introduce significant inconsistencies in texture features, even when assessing the same patient. This variability poses a fundamental challenge for subsequent research that relies on consistent image features. Existing CT image standardization models predominantly utilize GAN-based supervised or semi-supervised learning, but their performance remains limited. We present DiffusionCT, an innovative score-based DDPM model that operates in the latent space to transform disparate non-standard distributions into a standardized form. The architecture comprises a U-Net-based encoder-decoder, augmented by a DDPM model integrated at the bottleneck position. First, the encoder-decoder is trained independently, without embedding DDPM, to capture the latent representation of the input data. Second, the latent DDPM model is trained while keeping the encoder-decoder parameters fixed. Finally, the decoder uses the transformed latent representation to generate a standardized CT image, providing a more consistent basis for downstream analysis. Empirical tests on patient CT images indicate notable improvements in image standardization using DiffusionCT. Additionally, the model significantly reduces image noise in SPAD images, further validating the effectiveness of DiffusionCT for advanced imaging tasks.

Enhancing Conditional Image Generation with Explainable Latent Space Manipulation

In the realm of image synthesis, achieving fidelity to a reference image while adhering to conditional prompts remains a significant challenge. This paper proposes a novel approach that integrates a diffusion model with latent space manipulation and gradient-based selective attention mechanisms to address this issue. Leveraging Grad-SAM (Gradient-based Selective Attention Manipulation), we analyze the cross attention maps of the cross attention layers and gradients for the denoised latent vector, deriving importance scores of elements of denoised latent vector related to the subject of interest. Using this information, we create masks at specific timesteps during denoising to preserve subjects while seamlessly integrating the reference image features. This approach ensures the faithful formation of subjects based on conditional prompts, while concurrently refining the background for a more coherent composition. Our experiments on places365 dataset demonstrate promising results, with our proposed model achieving the lowest mean and median Frechet Inception Distance (FID) scores compared to baseline models, indicating superior fidelity preservation. Furthermore, our model exhibits competitive performance in aligning the generated images with provided textual descriptions, as evidenced by high CLIP scores. These results highlight the effectiveness of our approach in both fidelity preservation and textual context preservation, offering a significant advancement in text-to-image synthesis tasks.

Autoregressive Diffusion Transformer for Text-to-Speech Synthesis

Audio language models have recently emerged as a promising approach for various audio generation tasks, relying on audio tokenizers to encode waveforms into sequences of discrete symbols. Audio tokenization often poses a necessary compromise between code bitrate and reconstruction accuracy. When dealing with low-bitrate audio codes, language models are constrained to process only a subset of the information embedded in the audio, which in turn restricts their generative capabilities. To circumvent these issues, we propose encoding audio as vector sequences in continuous space mathbb R^d and autoregressively generating these sequences using a decoder-only diffusion transformer (ARDiT). Our findings indicate that ARDiT excels in zero-shot text-to-speech and exhibits performance that compares to or even surpasses that of state-of-the-art models. High-bitrate continuous speech representation enables almost flawless reconstruction, allowing our model to achieve nearly perfect speech editing. Our experiments reveal that employing Integral Kullback-Leibler (IKL) divergence for distillation at each autoregressive step significantly boosts the perceived quality of the samples. Simultaneously, it condenses the iterative sampling process of the diffusion model into a single step. Furthermore, ARDiT can be trained to predict several continuous vectors in one step, significantly reducing latency during sampling. Impressively, one of our models can generate 170 ms of 24 kHz speech per evaluation step with minimal degradation in performance. Audio samples are available at http://ardit-tts.github.io/ .

LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights

Latent Diffusion Models (LDMs) have emerged as powerful generative models, known for delivering remarkable results under constrained computational resources. However, deploying LDMs on resource-limited devices remains a complex issue, presenting challenges such as memory consumption and inference speed. To address this issue, we introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing LDMs. Traditional pruning methods for deep neural networks are not tailored to the unique characteristics of LDMs, such as the high computational cost of training and the absence of a fast, straightforward and task-agnostic method for evaluating model performance. Our method tackles these challenges by leveraging the latent space during the pruning process, enabling us to effectively quantify the impact of pruning on model performance, independently of the task at hand. This targeted pruning of components with minimal impact on the output allows for faster convergence during training, as the model has less information to re-learn, thereby addressing the high computational cost of training. Consequently, our approach achieves a compressed model that offers improved inference speed and reduced parameter count, while maintaining minimal performance degradation. We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG). Notably, we reduce the inference time of Stable Diffusion (SD) by 34.9% while simultaneously improving its FID by 5.2% on MS-COCO T2I benchmark. This work paves the way for more efficient pruning methods for LDMs, enhancing their applicability.

DDMI: Domain-Agnostic Latent Diffusion Models for Synthesizing High-Quality Implicit Neural Representations

Recent studies have introduced a new class of generative models for synthesizing implicit neural representations (INRs) that capture arbitrary continuous signals in various domains. These models opened the door for domain-agnostic generative models, but they often fail to achieve high-quality generation. We observed that the existing methods generate the weights of neural networks to parameterize INRs and evaluate the network with fixed positional embeddings (PEs). Arguably, this architecture limits the expressive power of generative models and results in low-quality INR generation. To address this limitation, we propose Domain-agnostic Latent Diffusion Model for INRs (DDMI) that generates adaptive positional embeddings instead of neural networks' weights. Specifically, we develop a Discrete-to-continuous space Variational AutoEncoder (D2C-VAE), which seamlessly connects discrete data and the continuous signal functions in the shared latent space. Additionally, we introduce a novel conditioning mechanism for evaluating INRs with the hierarchically decomposed PEs to further enhance expressive power. Extensive experiments across four modalities, e.g., 2D images, 3D shapes, Neural Radiance Fields, and videos, with seven benchmark datasets, demonstrate the versatility of DDMI and its superior performance compared to the existing INR generative models.

LatentSpeech: Latent Diffusion for Text-To-Speech Generation

Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology

Diffusion Implicit Policy for Unpaired Scene-aware Motion Synthesis

Human motion generation is a long-standing problem, and scene-aware motion synthesis has been widely researched recently due to its numerous applications. Prevailing methods rely heavily on paired motion-scene data whose quantity is limited. Meanwhile, it is difficult to generalize to diverse scenes when trained only on a few specific ones. Thus, we propose a unified framework, termed Diffusion Implicit Policy (DIP), for scene-aware motion synthesis, where paired motion-scene data are no longer necessary. In this framework, we disentangle human-scene interaction from motion synthesis during training and then introduce an interaction-based implicit policy into motion diffusion during inference. Synthesized motion can be derived through iterative diffusion denoising and implicit policy optimization, thus motion naturalness and interaction plausibility can be maintained simultaneously. The proposed implicit policy optimizes the intermediate noised motion in a GAN Inversion manner to maintain motion continuity and control keyframe poses though the ControlNet branch and motion inpainting. For long-term motion synthesis, we introduce motion blending for stable transitions between multiple sub-tasks, where motions are fused in rotation power space and translation linear space. The proposed method is evaluated on synthesized scenes with ShapeNet furniture, and real scenes from PROX and Replica. Results show that our framework presents better motion naturalness and interaction plausibility than cutting-edge methods. This also indicates the feasibility of utilizing the DIP for motion synthesis in more general tasks and versatile scenes. https://jingyugong.github.io/DiffusionImplicitPolicy/

LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba

Recent Transformer-based diffusion models have shown remarkable performance, largely attributed to the ability of the self-attention mechanism to accurately capture both global and local contexts by computing all-pair interactions among input tokens. However, their quadratic complexity poses significant computational challenges for long-sequence inputs. Conversely, a recent state space model called Mamba offers linear complexity by compressing a filtered global context into a hidden state. Despite its efficiency, compression inevitably leads to information loss of fine-grained local dependencies among tokens, which are crucial for effective visual generative modeling. Motivated by these observations, we introduce Local Attentional Mamba (LaMamba) blocks that combine the strengths of self-attention and Mamba, capturing both global contexts and local details with linear complexity. Leveraging the efficient U-Net architecture, our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution, all while utilizing substantially fewer GFLOPs and a comparable number of parameters. Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62\% GFLOPs compared to DiT-XL/2, while achieving superior performance with comparable or fewer parameters.

PreciseControl: Enhancing Text-To-Image Diffusion Models with Fine-Grained Attribute Control

Recently, we have seen a surge of personalization methods for text-to-image (T2I) diffusion models to learn a concept using a few images. Existing approaches, when used for face personalization, suffer to achieve convincing inversion with identity preservation and rely on semantic text-based editing of the generated face. However, a more fine-grained control is desired for facial attribute editing, which is challenging to achieve solely with text prompts. In contrast, StyleGAN models learn a rich face prior and enable smooth control towards fine-grained attribute editing by latent manipulation. This work uses the disentangled W+ space of StyleGANs to condition the T2I model. This approach allows us to precisely manipulate facial attributes, such as smoothly introducing a smile, while preserving the existing coarse text-based control inherent in T2I models. To enable conditioning of the T2I model on the W+ space, we train a latent mapper to translate latent codes from W+ to the token embedding space of the T2I model. The proposed approach excels in the precise inversion of face images with attribute preservation and facilitates continuous control for fine-grained attribute editing. Furthermore, our approach can be readily extended to generate compositions involving multiple individuals. We perform extensive experiments to validate our method for face personalization and fine-grained attribute editing.

FilterPrompt: Guiding Image Transfer in Diffusion Models

In controllable generation tasks, flexibly manipulating the generated images to attain a desired appearance or structure based on a single input image cue remains a critical and longstanding challenge. Achieving this requires the effective decoupling of key attributes within the input image data, aiming to get representations accurately. Previous research has predominantly concentrated on disentangling image attributes within feature space. However, the complex distribution present in real-world data often makes the application of such decoupling algorithms to other datasets challenging. Moreover, the granularity of control over feature encoding frequently fails to meet specific task requirements. Upon scrutinizing the characteristics of various generative models, we have observed that the input sensitivity and dynamic evolution properties of the diffusion model can be effectively fused with the explicit decomposition operation in pixel space. This integration enables the image processing operations performed in pixel space for a specific feature distribution of the input image, and can achieve the desired control effect in the generated results. Therefore, we propose FilterPrompt, an approach to enhance the model control effect. It can be universally applied to any diffusion model, allowing users to adjust the representation of specific image features in accordance with task requirements, thereby facilitating more precise and controllable generation outcomes. In particular, our designed experiments demonstrate that the FilterPrompt optimizes feature correlation, mitigates content conflicts during the generation process, and enhances the model's control capability.

LoMOE: Localized Multi-Object Editing via Multi-Diffusion

Recent developments in the field of diffusion models have demonstrated an exceptional capacity to generate high-quality prompt-conditioned image edits. Nevertheless, previous approaches have primarily relied on textual prompts for image editing, which tend to be less effective when making precise edits to specific objects or fine-grained regions within a scene containing single/multiple objects. We introduce a novel framework for zero-shot localized multi-object editing through a multi-diffusion process to overcome this challenge. This framework empowers users to perform various operations on objects within an image, such as adding, replacing, or editing many objects in a complex scene in one pass. Our approach leverages foreground masks and corresponding simple text prompts that exert localized influences on the target regions resulting in high-fidelity image editing. A combination of cross-attention and background preservation losses within the latent space ensures that the characteristics of the object being edited are preserved while simultaneously achieving a high-quality, seamless reconstruction of the background with fewer artifacts compared to the current methods. We also curate and release a dataset dedicated to multi-object editing, named LoMOE-Bench. Our experiments against existing state-of-the-art methods demonstrate the improved effectiveness of our approach in terms of both image editing quality and inference speed.

SeFi-IDE: Semantic-Fidelity Identity Embedding for Personalized Diffusion-Based Generation

Advanced diffusion-based Text-to-Image (T2I) models, such as the Stable Diffusion Model, have made significant progress in generating diverse and high-quality images using text prompts alone. However, T2I models are unable to accurately map identities (IDs) when non-famous users require personalized image generation. The main problem is that existing T2I models do not learn the ID-image alignments of new users. The previous methods either failed to accurately fit the face region or lost the interactive generative ability with other existing concepts in T2I models (i.e., unable to generate other concepts described in given prompts such as scenes, actions, and facial attributes). In this paper, we focus on accurate and semantic-fidelity ID embedding into the Stable Diffusion Model for personalized generation. We address this challenge from two perspectives: face-wise region fitting, and semantic-fidelity token optimization. Specifically, we first visualize the attention overfit problem, and propose a face-wise attention loss to fit the face region instead of the whole target image. This key trick significantly enhances the ID accuracy and interactive generative ability with other existing concepts. Then, we optimize one ID representation as multiple per-stage tokens where each token contains two disentangled features. This expansion of the textual conditioning space enhances semantic-fidelity control. Extensive experiments validate that our results exhibit superior ID accuracy and manipulation ability compared to previous methods.

Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos

A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.

Bridge Diffusion Model: bridge non-English language-native text-to-image diffusion model with English communities

Text-to-Image generation (TTI) technologies are advancing rapidly, especially in the English language communities. However, English-native TTI models inherently carry biases from English world centric training data, which creates a dilemma for development of other language-native TTI models. One common choice is fine-tuning the English-native TTI model with translated samples from non-English communities. It falls short of fully addressing the model bias problem. Alternatively, training non-English language native models from scratch can effectively resolve the English world bias, but diverges from the English TTI communities, thus not able to utilize the strides continuously gaining in the English TTI communities any more. To build non-English language native TTI model meanwhile keep compatability with the English TTI communities, we propose a novel model structure referred as "Bridge Diffusion Model" (BDM). The proposed BDM employs a backbone-branch network structure to learn the non-English language semantics while keep the latent space compatible with the English-native TTI backbone, in an end-to-end manner. The unique advantages of the proposed BDM are that it's not only adept at generating images that precisely depict non-English language semantics, but also compatible with various English-native TTI plugins, such as different checkpoints, LoRA, ControlNet, Dreambooth, and Textual Inversion, etc. Moreover, BDM can concurrently generate content seamlessly combining both non-English native and English-native semantics within a single image, fostering cultural interaction. We verify our method by applying BDM to build a Chinese-native TTI model, whereas the method is generic and applicable to any other language.

Diffusion in Diffusion: Cyclic One-Way Diffusion for Text-Vision-Conditioned Generation

Originating from the diffusion phenomenon in physics that describes particle movement, the diffusion generative models inherit the characteristics of stochastic random walk in the data space along the denoising trajectory. However, the intrinsic mutual interference among image regions contradicts the need for practical downstream application scenarios where the preservation of low-level pixel information from given conditioning is desired (e.g., customization tasks like personalized generation and inpainting based on a user-provided single image). In this work, we investigate the diffusion (physics) in diffusion (machine learning) properties and propose our Cyclic One-Way Diffusion (COW) method to control the direction of diffusion phenomenon given a pre-trained frozen diffusion model for versatile customization application scenarios, where the low-level pixel information from the conditioning needs to be preserved. Notably, unlike most current methods that incorporate additional conditions by fine-tuning the base text-to-image diffusion model or learning auxiliary networks, our method provides a novel perspective to understand the task needs and is applicable to a wider range of customization scenarios in a learning-free manner. Extensive experiment results show that our proposed COW can achieve more flexible customization based on strict visual conditions in different application settings. Project page: https://wangruoyu02.github.io/cow.github.io/.

Conditional Image-to-Video Generation with Latent Flow Diffusion Models

Conditional image-to-video (cI2V) generation aims to synthesize a new plausible video starting from an image (e.g., a person's face) and a condition (e.g., an action class label like smile). The key challenge of the cI2V task lies in the simultaneous generation of realistic spatial appearance and temporal dynamics corresponding to the given image and condition. In this paper, we propose an approach for cI2V using novel latent flow diffusion models (LFDM) that synthesize an optical flow sequence in the latent space based on the given condition to warp the given image. Compared to previous direct-synthesis-based works, our proposed LFDM can better synthesize spatial details and temporal motion by fully utilizing the spatial content of the given image and warping it in the latent space according to the generated temporally-coherent flow. The training of LFDM consists of two separate stages: (1) an unsupervised learning stage to train a latent flow auto-encoder for spatial content generation, including a flow predictor to estimate latent flow between pairs of video frames, and (2) a conditional learning stage to train a 3D-UNet-based diffusion model (DM) for temporal latent flow generation. Unlike previous DMs operating in pixel space or latent feature space that couples spatial and temporal information, the DM in our LFDM only needs to learn a low-dimensional latent flow space for motion generation, thus being more computationally efficient. We conduct comprehensive experiments on multiple datasets, where LFDM consistently outperforms prior arts. Furthermore, we show that LFDM can be easily adapted to new domains by simply finetuning the image decoder. Our code is available at https://github.com/nihaomiao/CVPR23_LFDM.

Single Motion Diffusion

Synthesizing realistic animations of humans, animals, and even imaginary creatures, has long been a goal for artists and computer graphics professionals. Compared to the imaging domain, which is rich with large available datasets, the number of data instances for the motion domain is limited, particularly for the animation of animals and exotic creatures (e.g., dragons), which have unique skeletons and motion patterns. In this work, we present a Single Motion Diffusion Model, dubbed SinMDM, a model designed to learn the internal motifs of a single motion sequence with arbitrary topology and synthesize motions of arbitrary length that are faithful to them. We harness the power of diffusion models and present a denoising network explicitly designed for the task of learning from a single input motion. SinMDM is designed to be a lightweight architecture, which avoids overfitting by using a shallow network with local attention layers that narrow the receptive field and encourage motion diversity. SinMDM can be applied in various contexts, including spatial and temporal in-betweening, motion expansion, style transfer, and crowd animation. Our results show that SinMDM outperforms existing methods both in quality and time-space efficiency. Moreover, while current approaches require additional training for different applications, our work facilitates these applications at inference time. Our code and trained models are available at https://sinmdm.github.io/SinMDM-page.

Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution

Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pre-trained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model, which means that our sampling method "boosts" current diffusion-based SR models without any additional training.

DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics

Diffusion probabilistic models (DPMs) have exhibited excellent performance for high-fidelity image generation while suffering from inefficient sampling. Recent works accelerate the sampling procedure by proposing fast ODE solvers that leverage the specific ODE form of DPMs. However, they highly rely on specific parameterization during inference (such as noise/data prediction), which might not be the optimal choice. In this work, we propose a novel formulation towards the optimal parameterization during sampling that minimizes the first-order discretization error of the ODE solution. Based on such formulation, we propose DPM-Solver-v3, a new fast ODE solver for DPMs by introducing several coefficients efficiently computed on the pretrained model, which we call empirical model statistics. We further incorporate multistep methods and a predictor-corrector framework, and propose some techniques for improving sample quality at small numbers of function evaluations (NFE) or large guidance scales. Experiments show that DPM-Solver-v3 achieves consistently better or comparable performance in both unconditional and conditional sampling with both pixel-space and latent-space DPMs, especially in 5sim10 NFEs. We achieve FIDs of 12.21 (5 NFE), 2.51 (10 NFE) on unconditional CIFAR10, and MSE of 0.55 (5 NFE, 7.5 guidance scale) on Stable Diffusion, bringing a speed-up of 15\%sim30\% compared to previous state-of-the-art training-free methods. Code is available at https://github.com/thu-ml/DPM-Solver-v3.

Flow Matching in Latent Space

Flow matching is a recent framework to train generative models that exhibits impressive empirical performance while being relatively easier to train compared with diffusion-based models. Despite its advantageous properties, prior methods still face the challenges of expensive computing and a large number of function evaluations of off-the-shelf solvers in the pixel space. Furthermore, although latent-based generative methods have shown great success in recent years, this particular model type remains underexplored in this area. In this work, we propose to apply flow matching in the latent spaces of pretrained autoencoders, which offers improved computational efficiency and scalability for high-resolution image synthesis. This enables flow-matching training on constrained computational resources while maintaining their quality and flexibility. Additionally, our work stands as a pioneering contribution in the integration of various conditions into flow matching for conditional generation tasks, including label-conditioned image generation, image inpainting, and semantic-to-image generation. Through extensive experiments, our approach demonstrates its effectiveness in both quantitative and qualitative results on various datasets, such as CelebA-HQ, FFHQ, LSUN Church & Bedroom, and ImageNet. We also provide a theoretical control of the Wasserstein-2 distance between the reconstructed latent flow distribution and true data distribution, showing it is upper-bounded by the latent flow matching objective. Our code will be available at https://github.com/VinAIResearch/LFM.git.

NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation

Image interpolation based on diffusion models is promising in creating fresh and interesting images. Advanced interpolation methods mainly focus on spherical linear interpolation, where images are encoded into the noise space and then interpolated for denoising to images. However, existing methods face challenges in effectively interpolating natural images (not generated by diffusion models), thereby restricting their practical applicability. Our experimental investigations reveal that these challenges stem from the invalidity of the encoding noise, which may no longer obey the expected noise distribution, e.g., a normal distribution. To address these challenges, we propose a novel approach to correct noise for image interpolation, NoiseDiffusion. Specifically, NoiseDiffusion approaches the invalid noise to the expected distribution by introducing subtle Gaussian noise and introduces a constraint to suppress noise with extreme values. In this context, promoting noise validity contributes to mitigating image artifacts, but the constraint and introduced exogenous noise typically lead to a reduction in signal-to-noise ratio, i.e., loss of original image information. Hence, NoiseDiffusion performs interpolation within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss. Consequently, NoiseDiffusion enables us to interpolate natural images without causing artifacts or information loss, thus achieving the best interpolation results.

The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling

With the incorporation of the UNet architecture, diffusion probabilistic models have become a dominant force in image generation tasks. One key design in UNet is the skip connections between the encoder and decoder blocks. Although skip connections have been shown to improve training stability and model performance, we reveal that such shortcuts can be a limiting factor for the complexity of the transformation. As the sampling steps decrease, the generation process and the role of the UNet get closer to the push-forward transformations from Gaussian distribution to the target, posing a challenge for the network's complexity. To address this challenge, we propose Skip-Tuning, a simple yet surprisingly effective training-free tuning method on the skip connections. Our method can achieve 100% FID improvement for pretrained EDM on ImageNet 64 with only 19 NFEs (1.75), breaking the limit of ODE samplers regardless of sampling steps. Surprisingly, the improvement persists when we increase the number of sampling steps and can even surpass the best result from EDM-2 (1.58) with only 39 NFEs (1.57). Comprehensive exploratory experiments are conducted to shed light on the surprising effectiveness. We observe that while Skip-Tuning increases the score-matching losses in the pixel space, the losses in the feature space are reduced, particularly at intermediate noise levels, which coincide with the most effective range accounting for image quality improvement.

FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models

We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from input audio signal. To capture the expressive, detailed nature of human heads, including hair, ears, and finer-scale eye movements, we propose to couple speech signal with the latent space of neural parametric head models to create high-fidelity, temporally coherent motion sequences. We propose a new latent diffusion model for this task, operating in the expression space of neural parametric head models, to synthesize audio-driven realistic head sequences. In the absence of a dataset with corresponding NPHM expressions to audio, we optimize for these correspondences to produce a dataset of temporally-optimized NPHM expressions fit to audio-video recordings of people talking. To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of volumetric human heads, representing a significant advancement in the field of audio-driven 3D animation. Notably, our approach stands out in its ability to generate plausible motion sequences that can produce high-fidelity head animation coupled with the NPHM shape space. Our experimental results substantiate the effectiveness of FaceTalk, consistently achieving superior and visually natural motion, encompassing diverse facial expressions and styles, outperforming existing methods by 75% in perceptual user study evaluation.

LatentWarp: Consistent Diffusion Latents for Zero-Shot Video-to-Video Translation

Leveraging the generative ability of image diffusion models offers great potential for zero-shot video-to-video translation. The key lies in how to maintain temporal consistency across generated video frames by image diffusion models. Previous methods typically adopt cross-frame attention, i.e., sharing the key and value tokens across attentions of different frames, to encourage the temporal consistency. However, in those works, temporal inconsistency issue may not be thoroughly solved, rendering the fidelity of generated videos limited.%The current state of the art cross-frame attention method aims at maintaining fine-grained visual details across frames, but it is still challenged by the temporal coherence problem. In this paper, we find the bottleneck lies in the unconstrained query tokens and propose a new zero-shot video-to-video translation framework, named LatentWarp. Our approach is simple: to constrain the query tokens to be temporally consistent, we further incorporate a warping operation in the latent space to constrain the query tokens. Specifically, based on the optical flow obtained from the original video, we warp the generated latent features of last frame to align with the current frame during the denoising process. As a result, the corresponding regions across the adjacent frames can share closely-related query tokens and attention outputs, which can further improve latent-level consistency to enhance visual temporal coherence of generated videos. Extensive experiment results demonstrate the superiority of LatentWarp in achieving video-to-video translation with temporal coherence.