Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeThe Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
Despite being the standard loss function to train multi-class neural networks, the log-softmax has two potential limitations. First, it involves computations that scale linearly with the number of output classes, which can restrict the size of problems we are able to tackle with current hardware. Second, it remains unclear how close it matches the task loss such as the top-k error rate or other non-differentiable evaluation metrics which we aim to optimize ultimately. In this paper, we introduce an alternative classification loss function, the Z-loss, which is designed to address these two issues. Unlike the log-softmax, it has the desirable property of belonging to the spherical loss family (Vincent et al., 2015), a class of loss functions for which training can be performed very efficiently with a complexity independent of the number of output classes. We show experimentally that it significantly outperforms the other spherical loss functions previously investigated. Furthermore, we show on a word language modeling task that it also outperforms the log-softmax with respect to certain ranking scores, such as top-k scores, suggesting that the Z-loss has the flexibility to better match the task loss. These qualities thus makes the Z-loss an appealing candidate to train very efficiently large output networks such as word-language models or other extreme classification problems. On the One Billion Word (Chelba et al., 2014) dataset, we are able to train a model with the Z-loss 40 times faster than the log-softmax and more than 4 times faster than the hierarchical softmax.
Neural Field Classifiers via Target Encoding and Classification Loss
Neural field methods have seen great progress in various long-standing tasks in computer vision and computer graphics, including novel view synthesis and geometry reconstruction. As existing neural field methods try to predict some coordinate-based continuous target values, such as RGB for Neural Radiance Field (NeRF), all of these methods are regression models and are optimized by some regression loss. However, are regression models really better than classification models for neural field methods? In this work, we try to visit this very fundamental but overlooked question for neural fields from a machine learning perspective. We successfully propose a novel Neural Field Classifier (NFC) framework which formulates existing neural field methods as classification tasks rather than regression tasks. The proposed NFC can easily transform arbitrary Neural Field Regressor (NFR) into its classification variant via employing a novel Target Encoding module and optimizing a classification loss. By encoding a continuous regression target into a high-dimensional discrete encoding, we naturally formulate a multi-label classification task. Extensive experiments demonstrate the impressive effectiveness of NFC at the nearly free extra computational costs. Moreover, NFC also shows robustness to sparse inputs, corrupted images, and dynamic scenes.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We demonstrate that value functions trained with categorical cross-entropy significantly improves performance and scalability in a variety of domains. These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that the benefits of categorical cross-entropy primarily stem from its ability to mitigate issues inherent to value-based RL, such as noisy targets and non-stationarity. Overall, we argue that a simple shift to training value functions with categorical cross-entropy can yield substantial improvements in the scalability of deep RL at little-to-no cost.
A step towards understanding why classification helps regression
A number of computer vision deep regression approaches report improved results when adding a classification loss to the regression loss. Here, we explore why this is useful in practice and when it is beneficial. To do so, we start from precisely controlled dataset variations and data samplings and find that the effect of adding a classification loss is the most pronounced for regression with imbalanced data. We explain these empirical findings by formalizing the relation between the balanced and imbalanced regression losses. Finally, we show that our findings hold on two real imbalanced image datasets for depth estimation (NYUD2-DIR), and age estimation (IMDB-WIKI-DIR), and on the problem of imbalanced video progress prediction (Breakfast). Our main takeaway is: for a regression task, if the data sampling is imbalanced, then add a classification loss.
TagAlign: Improving Vision-Language Alignment with Multi-Tag Classification
The crux of learning vision-language models is to extract semantically aligned information from visual and linguistic data. Existing attempts usually face the problem of coarse alignment, e.g., the vision encoder struggles in localizing an attribute-specified object. In this work, we propose an embarrassingly simple approach to better align image and text features with no need of additional data formats other than image-text pairs. Concretely, given an image and its paired text, we manage to parse objects (e.g., cat) and attributes (e.g., black) from the description, which are highly likely to exist in the image. It is noteworthy that the parsing pipeline is fully automatic and thus enjoys good scalability. With these parsed semantics as supervision signals, we can complement the commonly used image-text contrastive loss with the multi-tag classification loss. Extensive experimental results on a broad suite of semantic segmentation datasets substantiate the average 3.65\% improvement of our framework over existing alternatives. Furthermore, the visualization results indicate that attribute supervision makes vision-language models accurately localize attribute-specified objects. Project page and code can be found at https://qinying-liu.github.io/Tag-Align.
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
Long-tailed multi-label visual recognition (LTML) task is a highly challenging task due to the label co-occurrence and imbalanced data distribution. In this work, we propose a unified framework for LTML, namely prompt tuning with class-specific embedding loss (LMPT), capturing the semantic feature interactions between categories by combining text and image modality data and improving the performance synchronously on both head and tail classes. Specifically, LMPT introduces the embedding loss function with class-aware soft margin and re-weighting to learn class-specific contexts with the benefit of textual descriptions (captions), which could help establish semantic relationships between classes, especially between the head and tail classes. Furthermore, taking into account the class imbalance, the distribution-balanced loss is adopted as the classification loss function to further improve the performance on the tail classes without compromising head classes. Extensive experiments are conducted on VOC-LT and COCO-LT datasets, which demonstrates that the proposed method significantly surpasses the previous state-of-the-art methods and zero-shot CLIP in LTML. Our codes are fully available at https://github.com/richard-peng-xia/LMPT.
RankT5: Fine-Tuning T5 for Text Ranking with Ranking Losses
Recently, substantial progress has been made in text ranking based on pretrained language models such as BERT. However, there are limited studies on how to leverage more powerful sequence-to-sequence models such as T5. Existing attempts usually formulate text ranking as classification and rely on postprocessing to obtain a ranked list. In this paper, we propose RankT5 and study two T5-based ranking model structures, an encoder-decoder and an encoder-only one, so that they not only can directly output ranking scores for each query-document pair, but also can be fine-tuned with "pairwise" or "listwise" ranking losses to optimize ranking performances. Our experiments show that the proposed models with ranking losses can achieve substantial ranking performance gains on different public text ranking data sets. Moreover, when fine-tuned with listwise ranking losses, the ranking model appears to have better zero-shot ranking performance on out-of-domain data sets compared to the model fine-tuned with classification losses.
Revisiting IM2GPS in the Deep Learning Era
Image geolocalization, inferring the geographic location of an image, is a challenging computer vision problem with many potential applications. The recent state-of-the-art approach to this problem is a deep image classification approach in which the world is spatially divided into cells and a deep network is trained to predict the correct cell for a given image. We propose to combine this approach with the original Im2GPS approach in which a query image is matched against a database of geotagged images and the location is inferred from the retrieved set. We estimate the geographic location of a query image by applying kernel density estimation to the locations of its nearest neighbors in the reference database. Interestingly, we find that the best features for our retrieval task are derived from networks trained with classification loss even though we do not use a classification approach at test time. Training with classification loss outperforms several deep feature learning methods (e.g. Siamese networks with contrastive of triplet loss) more typical for retrieval applications. Our simple approach achieves state-of-the-art geolocalization accuracy while also requiring significantly less training data.
CAMixerSR: Only Details Need More "Attention"
To satisfy the rapidly increasing demands on the large image (2K-8K) super-resolution (SR), prevailing methods follow two independent tracks: 1) accelerate existing networks by content-aware routing, and 2) design better super-resolution networks via token mixer refining. Despite directness, they encounter unavoidable defects (e.g., inflexible route or non-discriminative processing) limiting further improvements of quality-complexity trade-off. To erase the drawbacks, we integrate these schemes by proposing a content-aware mixer (CAMixer), which assigns convolution for simple contexts and additional deformable window-attention for sparse textures. Specifically, the CAMixer uses a learnable predictor to generate multiple bootstraps, including offsets for windows warping, a mask for classifying windows, and convolutional attentions for endowing convolution with the dynamic property, which modulates attention to include more useful textures self-adaptively and improves the representation capability of convolution. We further introduce a global classification loss to improve the accuracy of predictors. By simply stacking CAMixers, we obtain CAMixerSR which achieves superior performance on large-image SR, lightweight SR, and omnidirectional-image SR.
Robust Weight Perturbation for Adversarial Training
Overfitting widely exists in adversarial robust training of deep networks. An effective remedy is adversarial weight perturbation, which injects the worst-case weight perturbation during network training by maximizing the classification loss on adversarial examples. Adversarial weight perturbation helps reduce the robust generalization gap; however, it also undermines the robustness improvement. A criterion that regulates the weight perturbation is therefore crucial for adversarial training. In this paper, we propose such a criterion, namely Loss Stationary Condition (LSC) for constrained perturbation. With LSC, we find that it is essential to conduct weight perturbation on adversarial data with small classification loss to eliminate robust overfitting. Weight perturbation on adversarial data with large classification loss is not necessary and may even lead to poor robustness. Based on these observations, we propose a robust perturbation strategy to constrain the extent of weight perturbation. The perturbation strategy prevents deep networks from overfitting while avoiding the side effect of excessive weight perturbation, significantly improving the robustness of adversarial training. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-art adversarial training methods.
Adaptive Margin Global Classifier for Exemplar-Free Class-Incremental Learning
Exemplar-free class-incremental learning (EFCIL) presents a significant challenge as the old class samples are absent for new task learning. Due to the severe imbalance between old and new class samples, the learned classifiers can be easily biased toward the new ones. Moreover, continually updating the feature extractor under EFCIL can compromise the discriminative power of old class features, e.g., leading to less compact and more overlapping distributions across classes. Existing methods mainly focus on handling biased classifier learning. In this work, both cases are considered using the proposed method. Specifically, we first introduce a Distribution-Based Global Classifier (DBGC) to avoid bias factors in existing methods, such as data imbalance and sampling. More importantly, the compromised distributions of old classes are simulated via a simple operation, variance enlarging (VE). Incorporating VE based on DBGC results in a novel classification loss for EFCIL. This loss is proven equivalent to an Adaptive Margin Softmax Cross Entropy (AMarX). The proposed method is thus called Adaptive Margin Global Classifier (AMGC). AMGC is simple yet effective. Extensive experiments show that AMGC achieves superior image classification results on its own under a challenging EFCIL setting. Detailed analysis is also provided for further demonstration.
Enhancing Phrase Representation by Information Bottleneck Guided Text Diffusion Process for Keyphrase Extraction
Keyphrase extraction (KPE) is an important task in Natural Language Processing for many scenarios, which aims to extract keyphrases that are present in a given document. Many existing supervised methods treat KPE as sequential labeling, span-level classification, or generative tasks. However, these methods lack the ability to utilize keyphrase information, which may result in biased results. In this study, we propose Diff-KPE, which leverages the supervised Variational Information Bottleneck (VIB) to guide the text diffusion process for generating enhanced keyphrase representations. Diff-KPE first generates the desired keyphrase embeddings conditioned on the entire document and then injects the generated keyphrase embeddings into each phrase representation. A ranking network and VIB are then optimized together with rank loss and classification loss, respectively. This design of Diff-KPE allows us to rank each candidate phrase by utilizing both the information of keyphrases and the document. Experiments show that Diff-KPE outperforms existing KPE methods on a large open domain keyphrase extraction benchmark, OpenKP, and a scientific domain dataset, KP20K.
"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches
Deep learning approaches have provided state-of-the-art performance in many applications by relying on large and overparameterized neural networks. However, such networks have been shown to be very brittle and are difficult to deploy on resource-limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to a more robust and compact model. Many heuristics exist for model pruning, but empirical studies show that some heuristics improve performance whereas others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation and the corresponding impact on model performance. To facilitate a comprehensive comparison and characterization of the high-dimensional model feature space, we introduce a visual geometric analysis of feature representations. We decomposed and evaluated a set of critical geometric concepts from the common adopted classification loss, and used them to design a visualization system to compare and highlight the impact of pruning on model performance and feature representation. The proposed tool provides an environment for in-depth comparison of pruning methods and a comprehensive understanding of how model response to common data corruption. By leveraging the proposed visualization, machine learning researchers can reveal the similarities between pruning methods and redundant in robustness evaluation benchmarks, obtain geometric insights about the differences between pruned models that achieve superior robustness performance, and identify samples that are robust or fragile to model pruning and common data corruption to model pruning and data corruption but also obtain insights and explanations on how some pruned models achieve superior robustness performance.
An End-to-End Visual-Audio Attention Network for Emotion Recognition in User-Generated Videos
Emotion recognition in user-generated videos plays an important role in human-centered computing. Existing methods mainly employ traditional two-stage shallow pipeline, i.e. extracting visual and/or audio features and training classifiers. In this paper, we propose to recognize video emotions in an end-to-end manner based on convolutional neural networks (CNNs). Specifically, we develop a deep Visual-Audio Attention Network (VAANet), a novel architecture that integrates spatial, channel-wise, and temporal attentions into a visual 3D CNN and temporal attentions into an audio 2D CNN. Further, we design a special classification loss, i.e. polarity-consistent cross-entropy loss, based on the polarity-emotion hierarchy constraint to guide the attention generation. Extensive experiments conducted on the challenging VideoEmotion-8 and Ekman-6 datasets demonstrate that the proposed VAANet outperforms the state-of-the-art approaches for video emotion recognition. Our source code is released at: https://github.com/maysonma/VAANet.
DeepWriter: A Multi-Stream Deep CNN for Text-independent Writer Identification
Text-independent writer identification is challenging due to the huge variation of written contents and the ambiguous written styles of different writers. This paper proposes DeepWriter, a deep multi-stream CNN to learn deep powerful representation for recognizing writers. DeepWriter takes local handwritten patches as input and is trained with softmax classification loss. The main contributions are: 1) we design and optimize multi-stream structure for writer identification task; 2) we introduce data augmentation learning to enhance the performance of DeepWriter; 3) we introduce a patch scanning strategy to handle text image with different lengths. In addition, we find that different languages such as English and Chinese may share common features for writer identification, and joint training can yield better performance. Experimental results on IAM and HWDB datasets show that our models achieve high identification accuracy: 99.01% on 301 writers and 97.03% on 657 writers with one English sentence input, 93.85% on 300 writers with one Chinese character input, which outperform previous methods with a large margin. Moreover, our models obtain accuracy of 98.01% on 301 writers with only 4 English alphabets as input.
Energy-based Automated Model Evaluation
The conventional evaluation protocols on machine learning models rely heavily on a labeled, i.i.d-assumed testing dataset, which is not often present in real world applications. The Automated Model Evaluation (AutoEval) shows an alternative to this traditional workflow, by forming a proximal prediction pipeline of the testing performance without the presence of ground-truth labels. Despite its recent successes, the AutoEval frameworks still suffer from an overconfidence issue, substantial storage and computational cost. In that regard, we propose a novel measure -- Meta-Distribution Energy (MDE) -- that allows the AutoEval framework to be both more efficient and effective. The core of the MDE is to establish a meta-distribution statistic, on the information (energy) associated with individual samples, then offer a smoother representation enabled by energy-based learning. We further provide our theoretical insights by connecting the MDE with the classification loss. We provide extensive experiments across modalities, datasets and different architectural backbones to validate MDE's validity, together with its superiority compared with prior approaches. We also prove MDE's versatility by showing its seamless integration with large-scale models, and easy adaption to learning scenarios with noisy- or imbalanced- labels. Code and data are available: https://github.com/pengr/Energy_AutoEval
Multi-label Cluster Discrimination for Visual Representation Learning
Contrastive Language Image Pre-training (CLIP) has recently demonstrated success across various tasks due to superior feature representation empowered by image-text contrastive learning. However, the instance discrimination method used by CLIP can hardly encode the semantic structure of training data. To handle this limitation, cluster discrimination has been proposed through iterative cluster assignment and classification. Nevertheless, most cluster discrimination approaches only define a single pseudo-label for each image, neglecting multi-label signals in the image. In this paper, we propose a novel Multi-Label Cluster Discrimination method named MLCD to enhance representation learning. In the clustering step, we first cluster the large-scale LAION-400M dataset into one million centers based on off-the-shelf embedding features. Considering that natural images frequently contain multiple visual objects or attributes, we select the multiple closest centers as auxiliary class labels. In the discrimination step, we design a novel multi-label classification loss, which elegantly separates losses from positive classes and negative classes, and alleviates ambiguity on decision boundary. We validate the proposed multi-label cluster discrimination method with experiments on different scales of models and pre-training datasets. Experimental results show that our method achieves state-of-the-art performance on multiple downstream tasks including linear probe, zero-shot classification, and image-text retrieval.
End-to-End Semi-Supervised Object Detection with Soft Teacher
This paper presents an end-to-end semi-supervised object detection approach, in contrast to previous more complex multi-stage methods. The end-to-end training gradually improves pseudo label qualities during the curriculum, and the more and more accurate pseudo labels in turn benefit object detection training. We also propose two simple yet effective techniques within this framework: a soft teacher mechanism where the classification loss of each unlabeled bounding box is weighed by the classification score produced by the teacher network; a box jittering approach to select reliable pseudo boxes for the learning of box regression. On the COCO benchmark, the proposed approach outperforms previous methods by a large margin under various labeling ratios, i.e. 1\%, 5\% and 10\%. Moreover, our approach proves to perform also well when the amount of labeled data is relatively large. For example, it can improve a 40.9 mAP baseline detector trained using the full COCO training set by +3.6 mAP, reaching 44.5 mAP, by leveraging the 123K unlabeled images of COCO. On the state-of-the-art Swin Transformer based object detector (58.9 mAP on test-dev), it can still significantly improve the detection accuracy by +1.5 mAP, reaching 60.4 mAP, and improve the instance segmentation accuracy by +1.2 mAP, reaching 52.4 mAP. Further incorporating with the Object365 pre-trained model, the detection accuracy reaches 61.3 mAP and the instance segmentation accuracy reaches 53.0 mAP, pushing the new state-of-the-art.
Feature Generating Networks for Zero-Shot Learning
Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-the-art approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level semantic information, offering a shortcut directly from a semantic descriptor of a class to a class-conditional feature distribution. Our proposed approach, pairing a Wasserstein GAN with a classification loss, is able to generate sufficiently discriminative CNN features to train softmax classifiers or any multimodal embedding method. Our experimental results demonstrate a significant boost in accuracy over the state of the art on five challenging datasets -- CUB, FLO, SUN, AWA and ImageNet -- in both the zero-shot learning and generalized zero-shot learning settings.
Tags2Parts: Discovering Semantic Regions from Shape Tags
We propose a novel method for discovering shape regions that strongly correlate with user-prescribed tags. For example, given a collection of chairs tagged as either "has armrest" or "lacks armrest", our system correctly highlights the armrest regions as the main distinctive parts between the two chair types. To obtain point-wise predictions from shape-wise tags we develop a novel neural network architecture that is trained with tag classification loss, but is designed to rely on segmentation to predict the tag. Our network is inspired by U-Net, but we replicate shallow U structures several times with new skip connections and pooling layers, and call the resulting architecture "WU-Net". We test our method on segmentation benchmarks and show that even with weak supervision of whole shape tags, our method can infer meaningful semantic regions, without ever observing shape segmentations. Further, once trained, the model can process shapes for which the tag is entirely unknown. As a bonus, our architecture is directly operational under full supervision and performs strongly on standard benchmarks. We validate our method through experiments with many variant architectures and prior baselines, and demonstrate several applications.
Controllable Music Production with Diffusion Models and Guidance Gradients
We demonstrate how conditional generation from diffusion models can be used to tackle a variety of realistic tasks in the production of music in 44.1kHz stereo audio with sampling-time guidance. The scenarios we consider include continuation, inpainting and regeneration of musical audio, the creation of smooth transitions between two different music tracks, and the transfer of desired stylistic characteristics to existing audio clips. We achieve this by applying guidance at sampling time in a simple framework that supports both reconstruction and classification losses, or any combination of the two. This approach ensures that generated audio can match its surrounding context, or conform to a class distribution or latent representation specified relative to any suitable pre-trained classifier or embedding model.
Integrating Prior Knowledge in Contrastive Learning with Kernel
Data augmentation is a crucial component in unsupervised contrastive learning (CL). It determines how positive samples are defined and, ultimately, the quality of the learned representation. In this work, we open the door to new perspectives for CL by integrating prior knowledge, given either by generative models -- viewed as prior representations -- or weak attributes in the positive and negative sampling. To this end, we use kernel theory to propose a novel loss, called decoupled uniformity, that i) allows the integration of prior knowledge and ii) removes the negative-positive coupling in the original InfoNCE loss. We draw a connection between contrastive learning and conditional mean embedding theory to derive tight bounds on the downstream classification loss. In an unsupervised setting, we empirically demonstrate that CL benefits from generative models to improve its representation both on natural and medical images. In a weakly supervised scenario, our framework outperforms other unconditional and conditional CL approaches.
Detection Transformer with Stable Matching
This paper is concerned with the matching stability problem across different decoder layers in DEtection TRansformers (DETR). We point out that the unstable matching in DETR is caused by a multi-optimization path problem, which is highlighted by the one-to-one matching design in DETR. To address this problem, we show that the most important design is to use and only use positional metrics (like IOU) to supervise classification scores of positive examples. Under the principle, we propose two simple yet effective modifications by integrating positional metrics to DETR's classification loss and matching cost, named position-supervised loss and position-modulated cost. We verify our methods on several DETR variants. Our methods show consistent improvements over baselines. By integrating our methods with DINO, we achieve 50.4 and 51.5 AP on the COCO detection benchmark using ResNet-50 backbones under 12 epochs and 24 epochs training settings, achieving a new record under the same setting. We achieve 63.8 AP on COCO detection test-dev with a Swin-Large backbone. Our code will be made available at https://github.com/IDEA-Research/Stable-DINO.
Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization
Due to its high societal impact, deepfake detection is getting active attention in the computer vision community. Most deepfake detection methods rely on identity, facial attributes, and adversarial perturbation-based spatio-temporal modifications at the whole video or random locations while keeping the meaning of the content intact. However, a sophisticated deepfake may contain only a small segment of video/audio manipulation, through which the meaning of the content can be, for example, completely inverted from a sentiment perspective. We introduce a content-driven audio-visual deepfake dataset, termed Localized Audio Visual DeepFake (LAV-DF), explicitly designed for the task of learning temporal forgery localization. Specifically, the content-driven audio-visual manipulations are performed strategically to change the sentiment polarity of the whole video. Our baseline method for benchmarking the proposed dataset is a 3DCNN model, termed as Boundary Aware Temporal Forgery Detection (BA-TFD), which is guided via contrastive, boundary matching, and frame classification loss functions. Our extensive quantitative and qualitative analysis demonstrates the proposed method's strong performance for temporal forgery localization and deepfake detection tasks.
Scaling Laws for Autoregressive Generative Modeling
We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.
In Defense of the Triplet Loss for Person Re-Identification
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is no exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.
Iterative pseudo-forced alignment by acoustic CTC loss for self-supervised ASR domain adaptation
High-quality data labeling from specific domains is costly and human time-consuming. In this work, we propose a self-supervised domain adaptation method, based upon an iterative pseudo-forced alignment algorithm. The produced alignments are employed to customize an end-to-end Automatic Speech Recognition (ASR) and iteratively refined. The algorithm is fed with frame-wise character posteriors produced by a seed ASR, trained with out-of-domain data, and optimized throughout a Connectionist Temporal Classification (CTC) loss. The alignments are computed iteratively upon a corpus of broadcast TV. The process is repeated by reducing the quantity of text to be aligned or expanding the alignment window until finding the best possible audio-text alignment. The starting timestamps, or temporal anchors, are produced uniquely based on the confidence score of the last aligned utterance. This score is computed with the paths of the CTC-alignment matrix. With this methodology, no human-revised text references are required. Alignments from long audio files with low-quality transcriptions, like TV captions, are filtered out by confidence score and ready for further ASR adaptation. The obtained results, on both the Spanish RTVE2022 and CommonVoice databases, underpin the feasibility of using CTC-based systems to perform: highly accurate audio-text alignments, domain adaptation and semi-supervised training of end-to-end ASR.
DMDSpeech: Distilled Diffusion Model Surpassing The Teacher in Zero-shot Speech Synthesis via Direct Metric Optimization
Diffusion models have demonstrated significant potential in speech synthesis tasks, including text-to-speech (TTS) and voice cloning. However, their iterative denoising processes are inefficient and hinder the application of end-to-end optimization with perceptual metrics. In this paper, we propose a novel method of distilling TTS diffusion models with direct end-to-end evaluation metric optimization, achieving state-of-the-art performance. By incorporating Connectionist Temporal Classification (CTC) loss and Speaker Verification (SV) loss, our approach optimizes perceptual evaluation metrics, leading to notable improvements in word error rate and speaker similarity. Our experiments show that DMDSpeech consistently surpasses prior state-of-the-art models in both naturalness and speaker similarity while being significantly faster. Moreover, our synthetic speech has a higher level of voice similarity to the prompt than the ground truth in both human evaluation and objective speaker similarity metric. This work highlights the potential of direct metric optimization in speech synthesis, allowing models to better align with human auditory preferences. The audio samples are available at https://dmdspeech.github.io/.
Bridging Cross-task Protocol Inconsistency for Distillation in Dense Object Detection
Knowledge distillation (KD) has shown potential for learning compact models in dense object detection. However, the commonly used softmax-based distillation ignores the absolute classification scores for individual categories. Thus, the optimum of the distillation loss does not necessarily lead to the optimal student classification scores for dense object detectors. This cross-task protocol inconsistency is critical, especially for dense object detectors, since the foreground categories are extremely imbalanced. To address the issue of protocol differences between distillation and classification, we propose a novel distillation method with cross-task consistent protocols, tailored for the dense object detection. For classification distillation, we address the cross-task protocol inconsistency problem by formulating the classification logit maps in both teacher and student models as multiple binary-classification maps and applying a binary-classification distillation loss to each map. For localization distillation, we design an IoU-based Localization Distillation Loss that is free from specific network structures and can be compared with existing localization distillation losses. Our proposed method is simple but effective, and experimental results demonstrate its superiority over existing methods. Code is available at https://github.com/TinyTigerPan/BCKD.
In defence of metric learning for speaker recognition
The objective of this paper is 'open-set' speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods.
Pre-training for Speech Translation: CTC Meets Optimal Transport
The gap between speech and text modalities is a major challenge in speech-to-text translation (ST). Different methods have been proposed to reduce this gap, but most of them require architectural changes in ST training. In this work, we propose to mitigate this issue at the pre-training stage, requiring no change in the ST model. First, we show that the connectionist temporal classification (CTC) loss can reduce the modality gap by design. We provide a quantitative comparison with the more common cross-entropy loss, showing that pre-training with CTC consistently achieves better final ST accuracy. Nevertheless, CTC is only a partial solution and thus, in our second contribution, we propose a novel pre-training method combining CTC and optimal transport to further reduce this gap. Our method pre-trains a Siamese-like model composed of two encoders, one for acoustic inputs and the other for textual inputs, such that they produce representations that are close to each other in the Wasserstein space. Extensive experiments on the standard CoVoST-2 and MuST-C datasets show that our pre-training method applied to the vanilla encoder-decoder Transformer achieves state-of-the-art performance under the no-external-data setting, and performs on par with recent strong multi-task learning systems trained with external data. Finally, our method can also be applied on top of these multi-task systems, leading to further improvements for these models. Code and pre-trained models are available at https://github.com/formiel/fairseq.
Mean Field Theory in Deep Metric Learning
In this paper, we explore the application of mean field theory, a technique from statistical physics, to deep metric learning and address the high training complexity commonly associated with conventional metric learning loss functions. By adapting mean field theory for deep metric learning, we develop an approach to design classification-based loss functions from pair-based ones, which can be considered complementary to the proxy-based approach. Applying the mean field theory to two pair-based loss functions, we derive two new loss functions, MeanFieldContrastive and MeanFieldClassWiseMultiSimilarity losses, with reduced training complexity. We extensively evaluate these derived loss functions on three image-retrieval datasets and demonstrate that our loss functions outperform baseline methods in two out of the three datasets.
Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages
Lyrics alignment gained considerable attention in recent years. State-of-the-art systems either re-use established speech recognition toolkits, or design end-to-end solutions involving a Connectionist Temporal Classification (CTC) loss. However, both approaches suffer from specific weaknesses: toolkits are known for their complexity, and CTC systems use a loss designed for transcription which can limit alignment accuracy. In this paper, we use instead a contrastive learning procedure that derives cross-modal embeddings linking the audio and text domains. This way, we obtain a novel system that is simple to train end-to-end, can make use of weakly annotated training data, jointly learns a powerful text model, and is tailored to alignment. The system is not only the first to yield an average absolute error below 0.2 seconds on the standard Jamendo dataset but it is also robust to other languages, even when trained on English data only. Finally, we release word-level alignments for the JamendoLyrics Multi-Lang dataset.
L1-aware Multilingual Mispronunciation Detection Framework
The phonological discrepancies between a speaker's native (L1) and the non-native language (L2) serves as a major factor for mispronunciation. This paper introduces a novel multilingual MDD architecture, L1-MultiMDD, enriched with L1-aware speech representation. An end-to-end speech encoder is trained on the input signal and its corresponding reference phoneme sequence. First, an attention mechanism is deployed to align the input audio with the reference phoneme sequence. Afterwards, the L1-L2-speech embedding are extracted from an auxiliary model, pretrained in a multi-task setup identifying L1 and L2 language, and are infused with the primary network. Finally, the L1-MultiMDD is then optimized for a unified multilingual phoneme recognition task using connectionist temporal classification (CTC) loss for the target languages: English, Arabic, and Mandarin. Our experiments demonstrate the effectiveness of the proposed L1-MultiMDD framework on both seen -- L2-ARTIC, LATIC, and AraVoiceL2v2; and unseen -- EpaDB and Speechocean762 datasets. The consistent gains in PER, and false rejection rate (FRR) across all target languages confirm our approach's robustness, efficacy, and generalizability.
Effectiveness of self-supervised pre-training for speech recognition
We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data.
mSLAM: Massively multilingual joint pre-training for speech and text
We present mSLAM, a multilingual Speech and LAnguage Model that learns cross-lingual cross-modal representations of speech and text by pre-training jointly on large amounts of unlabeled speech and text in multiple languages. mSLAM combines w2v-BERT pre-training on speech with SpanBERT pre-training on character-level text, along with Connectionist Temporal Classification (CTC) losses on paired speech and transcript data, to learn a single model capable of learning from and representing both speech and text signals in a shared representation space. We evaluate mSLAM on several downstream speech understanding tasks and find that joint pre-training with text improves quality on speech translation, speech intent classification and speech language-ID while being competitive on multilingual ASR, when compared against speech-only pre-training. Our speech translation model demonstrates zero-shot text translation without seeing any text translation data, providing evidence for cross-modal alignment of representations. mSLAM also benefits from multi-modal fine-tuning, further improving the quality of speech translation by directly leveraging text translation data during the fine-tuning process. Our empirical analysis highlights several opportunities and challenges arising from large-scale multimodal pre-training, suggesting directions for future research.
Easter2.0: Improving convolutional models for handwritten text recognition
Convolutional Neural Networks (CNN) have shown promising results for the task of Handwritten Text Recognition (HTR) but they still fall behind Recurrent Neural Networks (RNNs)/Transformer based models in terms of performance. In this paper, we propose a CNN based architecture that bridges this gap. Our work, Easter2.0, is composed of multiple layers of 1D Convolution, Batch Normalization, ReLU, Dropout, Dense Residual connection, Squeeze-and-Excitation module and make use of Connectionist Temporal Classification (CTC) loss. In addition to the Easter2.0 architecture, we propose a simple and effective data augmentation technique 'Tiling and Corruption (TACO)' relevant for the task of HTR/OCR. Our work achieves state-of-the-art results on IAM handwriting database when trained using only publicly available training data. In our experiments, we also present the impact of TACO augmentations and Squeeze-and-Excitation (SE) on text recognition accuracy. We further show that Easter2.0 is suitable for few-shot learning tasks and outperforms current best methods including Transformers when trained on limited amount of annotated data. Code and model is available at: https://github.com/kartikgill/Easter2
Big Self-Supervised Models are Strong Semi-Supervised Learners
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contrast to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels (le13 labeled images per class) using ResNet-50, a 10times improvement in label efficiency over the previous state-of-the-art. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels.
Concept-Centric Transformers: Enhancing Model Interpretability through Object-Centric Concept Learning within a Shared Global Workspace
Many interpretable AI approaches have been proposed to provide plausible explanations for a model's decision-making. However, configuring an explainable model that effectively communicates among computational modules has received less attention. A recently proposed shared global workspace theory showed that networks of distributed modules can benefit from sharing information with a bottlenecked memory because the communication constraints encourage specialization, compositionality, and synchronization among the modules. Inspired by this, we propose Concept-Centric Transformers, a simple yet effective configuration of the shared global workspace for interpretability, consisting of: i) an object-centric-based memory module for extracting semantic concepts from input features, ii) a cross-attention mechanism between the learned concept and input embeddings, and iii) standard classification and explanation losses to allow human analysts to directly assess an explanation for the model's classification reasoning. We test our approach against other existing concept-based methods on classification tasks for various datasets, including CIFAR100, CUB-200-2011, and ImageNet, and we show that our model achieves better classification accuracy than all baselines across all problems but also generates more consistent concept-based explanations of classification output.
Asymmetric Loss For Multi-Label Classification
In a typical multi-label setting, a picture contains on average few positive labels, and many negative ones. This positive-negative imbalance dominates the optimization process, and can lead to under-emphasizing gradients from positive labels during training, resulting in poor accuracy. In this paper, we introduce a novel asymmetric loss ("ASL"), which operates differently on positive and negative samples. The loss enables to dynamically down-weights and hard-thresholds easy negative samples, while also discarding possibly mislabeled samples. We demonstrate how ASL can balance the probabilities of different samples, and how this balancing is translated to better mAP scores. With ASL, we reach state-of-the-art results on multiple popular multi-label datasets: MS-COCO, Pascal-VOC, NUS-WIDE and Open Images. We also demonstrate ASL applicability for other tasks, such as single-label classification and object detection. ASL is effective, easy to implement, and does not increase the training time or complexity. Implementation is available at: https://github.com/Alibaba-MIIL/ASL.
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-k (forall kgeq 1) consistency of LDR losses for multi-class classification, and a negative result that a top-1 consistent and symmetric robust loss cannot achieve top-k consistency simultaneously for all kgeq 2; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at https://github.com/Optimization-AI/ICML2023_LDR.
EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification
Empirical risk minimization (ERM) with a computationally feasible surrogate loss is a widely accepted approach for classification. Notably, the convexity and calibration (CC) properties of a loss function ensure consistency of ERM in maximizing accuracy, thereby offering a wide range of options for surrogate losses. In this article, we propose a novel ensemble method, namely EnsLoss, which extends the ensemble learning concept to combine loss functions within the ERM framework. A key feature of our method is the consideration on preserving the "legitimacy" of the combined losses, i.e., ensuring the CC properties. Specifically, we first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions and directly generating calibrated loss-derivatives. Therefore, inspired by Dropout, EnsLoss enables loss ensembles through one training process with doubly stochastic gradient descent (i.e., random batch samples and random calibrated loss-derivatives). We theoretically establish the statistical consistency of our approach and provide insights into its benefits. The numerical effectiveness of EnsLoss compared to fixed loss methods is demonstrated through experiments on a broad range of 14 OpenML tabular datasets and 46 image datasets with various deep learning architectures. Python repository and source code are available on GitHub at https://github.com/statmlben/ensloss.
AraDIC: Arabic Document Classification using Image-Based Character Embeddings and Class-Balanced Loss
Classical and some deep learning techniques for Arabic text classification often depend on complex morphological analysis, word segmentation, and hand-crafted feature engineering. These could be eliminated by using character-level features. We propose a novel end-to-end Arabic document classification framework, Arabic document image-based classifier (AraDIC), inspired by the work on image-based character embeddings. AraDIC consists of an image-based character encoder and a classifier. They are trained in an end-to-end fashion using the class balanced loss to deal with the long-tailed data distribution problem. To evaluate the effectiveness of AraDIC, we created and published two datasets, the Arabic Wikipedia title (AWT) dataset and the Arabic poetry (AraP) dataset. To the best of our knowledge, this is the first image-based character embedding framework addressing the problem of Arabic text classification. We also present the first deep learning-based text classifier widely evaluated on modern standard Arabic, colloquial Arabic and classical Arabic. AraDIC shows performance improvement over classical and deep learning baselines by 12.29% and 23.05% for the micro and macro F-score, respectively.
SuSana Distancia is all you need: Enforcing class separability in metric learning via two novel distance-based loss functions for few-shot image classification
Few-shot learning is a challenging area of research that aims to learn new concepts with only a few labeled samples of data. Recent works based on metric-learning approaches leverage the meta-learning approach, which is encompassed by episodic tasks that make use a support (training) and query set (test) with the objective of learning a similarity comparison metric between those sets. Due to the lack of data, the learning process of the embedding network becomes an important part of the few-shot task. Previous works have addressed this problem using metric learning approaches, but the properties of the underlying latent space and the separability of the difference classes on it was not entirely enforced. In this work, we propose two different loss functions which consider the importance of the embedding vectors by looking at the intra-class and inter-class distance between the few data. The first loss function is the Proto-Triplet Loss, which is based on the original triplet loss with the modifications needed to better work on few-shot scenarios. The second loss function, which we dub ICNN loss is based on an inter and intra class nearest neighbors score, which help us to assess the quality of embeddings obtained from the trained network. Our results, obtained from a extensive experimental setup show a significant improvement in accuracy in the miniImagenNet benchmark compared to other metric-based few-shot learning methods by a margin of 2%, demonstrating the capability of these loss functions to allow the network to generalize better to previously unseen classes. In our experiments, we demonstrate competitive generalization capabilities to other domains, such as the Caltech CUB, Dogs and Cars datasets compared with the state of the art.
Bias Loss for Mobile Neural Networks
Compact convolutional neural networks (CNNs) have witnessed exceptional improvements in performance in recent years. However, they still fail to provide the same predictive power as CNNs with a large number of parameters. The diverse and even abundant features captured by the layers is an important characteristic of these successful CNNs. However, differences in this characteristic between large CNNs and their compact counterparts have rarely been investigated. In compact CNNs, due to the limited number of parameters, abundant features are unlikely to be obtained, and feature diversity becomes an essential characteristic. Diverse features present in the activation maps derived from a data point during model inference may indicate the presence of a set of unique descriptors necessary to distinguish between objects of different classes. In contrast, data points with low feature diversity may not provide a sufficient amount of unique descriptors to make a valid prediction; we refer to them as random predictions. Random predictions can negatively impact the optimization process and harm the final performance. This paper proposes addressing the problem raised by random predictions by reshaping the standard cross-entropy to make it biased toward data points with a limited number of unique descriptive features. Our novel Bias Loss focuses the training on a set of valuable data points and prevents the vast number of samples with poor learning features from misleading the optimization process. Furthermore, to show the importance of diversity, we present a family of SkipNet models whose architectures are brought to boost the number of unique descriptors in the last layers. Our Skipnet-M can achieve 1% higher classification accuracy than MobileNetV3 Large.
Mean-Shifted Contrastive Loss for Anomaly Detection
Deep anomaly detection methods learn representations that separate between normal and anomalous images. Although self-supervised representation learning is commonly used, small dataset sizes limit its effectiveness. It was previously shown that utilizing external, generic datasets (e.g. ImageNet classification) can significantly improve anomaly detection performance. One approach is outlier exposure, which fails when the external datasets do not resemble the anomalies. We take the approach of transferring representations pre-trained on external datasets for anomaly detection. Anomaly detection performance can be significantly improved by fine-tuning the pre-trained representations on the normal training images. In this paper, we first demonstrate and analyze that contrastive learning, the most popular self-supervised learning paradigm cannot be naively applied to pre-trained features. The reason is that pre-trained feature initialization causes poor conditioning for standard contrastive objectives, resulting in bad optimization dynamics. Based on our analysis, we provide a modified contrastive objective, the Mean-Shifted Contrastive Loss. Our method is highly effective and achieves a new state-of-the-art anomaly detection performance including 98.6% ROC-AUC on the CIFAR-10 dataset.
Nearly Lossless Adaptive Bit Switching
Model quantization is widely applied for compressing and accelerating deep neural networks (DNNs). However, conventional Quantization-Aware Training (QAT) focuses on training DNNs with uniform bit-width. The bit-width settings vary across different hardware and transmission demands, which induces considerable training and storage costs. Hence, the scheme of one-shot joint training multiple precisions is proposed to address this issue. Previous works either store a larger FP32 model to switch between different precision models for higher accuracy or store a smaller INT8 model but compromise accuracy due to using shared quantization parameters. In this paper, we introduce the Double Rounding quantization method, which fully utilizes the quantized representation range to accomplish nearly lossless bit-switching while reducing storage by using the highest integer precision instead of full precision. Furthermore, we observe a competitive interference among different precisions during one-shot joint training, primarily due to inconsistent gradients of quantization scales during backward propagation. To tackle this problem, we propose an Adaptive Learning Rate Scaling (ALRS) technique that dynamically adapts learning rates for various precisions to optimize the training process. Additionally, we extend our Double Rounding to one-shot mixed precision training and develop a Hessian-Aware Stochastic Bit-switching (HASB) strategy. Experimental results on the ImageNet-1K classification demonstrate that our methods have enough advantages to state-of-the-art one-shot joint QAT in both multi-precision and mixed-precision. We also validate the feasibility of our method on detection and segmentation tasks, as well as on LLMs task. Our codes are available at https://github.com/haiduo/Double-Rounding.
Cut your Losses with Squentropy
Nearly all practical neural models for classification are trained using cross-entropy loss. Yet this ubiquitous choice is supported by little theoretical or empirical evidence. Recent work (Hui & Belkin, 2020) suggests that training using the (rescaled) square loss is often superior in terms of the classification accuracy. In this paper we propose the "squentropy" loss, which is the sum of two terms: the cross-entropy loss and the average square loss over the incorrect classes. We provide an extensive set of experiments on multi-class classification problems showing that the squentropy loss outperforms both the pure cross entropy and rescaled square losses in terms of the classification accuracy. We also demonstrate that it provides significantly better model calibration than either of these alternative losses and, furthermore, has less variance with respect to the random initialization. Additionally, in contrast to the square loss, squentropy loss can typically be trained using exactly the same optimization parameters, including the learning rate, as the standard cross-entropy loss, making it a true "plug-and-play" replacement. Finally, unlike the rescaled square loss, multiclass squentropy contains no parameters that need to be adjusted.
Dual-Encoders for Extreme Multi-Label Classification
Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.
Loss of Plasticity in Deep Continual Learning
Modern deep-learning systems are specialized to problem settings in which training occurs once and then never again, as opposed to continual-learning settings in which training occurs continually. If deep-learning systems are applied in a continual learning setting, then it is well known that they may fail to remember earlier examples. More fundamental, but less well known, is that they may also lose their ability to learn on new examples, a phenomenon called loss of plasticity. We provide direct demonstrations of loss of plasticity using the MNIST and ImageNet datasets repurposed for continual learning as sequences of tasks. In ImageNet, binary classification performance dropped from 89\% accuracy on an early task down to 77\%, about the level of a linear network, on the 2000th task. Loss of plasticity occurred with a wide range of deep network architectures, optimizers, activation functions, batch normalization, dropout, but was substantially eased by L^2-regularization, particularly when combined with weight perturbation. Further, we introduce a new algorithm -- continual backpropagation -- which slightly modifies conventional backpropagation to reinitialize a small fraction of less-used units after each example and appears to maintain plasticity indefinitely.
FastText.zip: Compressing text classification models
We consider the problem of producing compact architectures for text classification, such that the full model fits in a limited amount of memory. After considering different solutions inspired by the hashing literature, we propose a method built upon product quantization to store word embeddings. While the original technique leads to a loss in accuracy, we adapt this method to circumvent quantization artefacts. Our experiments carried out on several benchmarks show that our approach typically requires two orders of magnitude less memory than fastText while being only slightly inferior with respect to accuracy. As a result, it outperforms the state of the art by a good margin in terms of the compromise between memory usage and accuracy.
Deep Learning-Powered Classification of Thoracic Diseases in Chest X-Rays
Chest X-rays play a pivotal role in diagnosing respiratory diseases such as pneumonia, tuberculosis, and COVID-19, which are prevalent and present unique diagnostic challenges due to overlapping visual features and variability in image quality. Severe class imbalance and the complexity of medical images hinder automated analysis. This study leverages deep learning techniques, including transfer learning on pre-trained models (AlexNet, ResNet, and InceptionNet), to enhance disease detection and classification. By fine-tuning these models and incorporating focal loss to address class imbalance, significant performance improvements were achieved. Grad-CAM visualizations further enhance model interpretability, providing insights into clinically relevant regions influencing predictions. The InceptionV3 model, for instance, achieved a 28% improvement in AUC and a 15% increase in F1-Score. These findings highlight the potential of deep learning to improve diagnostic workflows and support clinical decision-making.
A benchmark for toxic comment classification on Civil Comments dataset
Toxic comment detection on social media has proven to be essential for content moderation. This paper compares a wide set of different models on a highly skewed multi-label hate speech dataset. We consider inference time and several metrics to measure performance and bias in our comparison. We show that all BERTs have similar performance regardless of the size, optimizations or language used to pre-train the models. RNNs are much faster at inference than any of the BERT. BiLSTM remains a good compromise between performance and inference time. RoBERTa with Focal Loss offers the best performance on biases and AUROC. However, DistilBERT combines both good AUROC and a low inference time. All models are affected by the bias of associating identities. BERT, RNN, and XLNet are less sensitive than the CNN and Compact Convolutional Transformers.
SphereFace2: Binary Classification is All You Need for Deep Face Recognition
State-of-the-art deep face recognition methods are mostly trained with a softmax-based multi-class classification framework. Despite being popular and effective, these methods still have a few shortcomings that limit empirical performance. In this paper, we start by identifying the discrepancy between training and evaluation in the existing multi-class classification framework and then discuss the potential limitations caused by the "competitive" nature of softmax normalization. Motivated by these limitations, we propose a novel binary classification training framework, termed SphereFace2. In contrast to existing methods, SphereFace2 circumvents the softmax normalization, as well as the corresponding closed-set assumption. This effectively bridges the gap between training and evaluation, enabling the representations to be improved individually by each binary classification task. Besides designing a specific well-performing loss function, we summarize a few general principles for this "one-vs-all" binary classification framework so that it can outperform current competitive methods. Our experiments on popular benchmarks demonstrate that SphereFace2 can consistently outperform state-of-the-art deep face recognition methods. The code has been made publicly available.
Model Calibration in Dense Classification with Adaptive Label Perturbation
For safety-related applications, it is crucial to produce trustworthy deep neural networks whose prediction is associated with confidence that can represent the likelihood of correctness for subsequent decision-making. Existing dense binary classification models are prone to being over-confident. To improve model calibration, we propose Adaptive Stochastic Label Perturbation (ASLP) which learns a unique label perturbation level for each training image. ASLP employs our proposed Self-Calibrating Binary Cross Entropy (SC-BCE) loss, which unifies label perturbation processes including stochastic approaches (like DisturbLabel), and label smoothing, to correct calibration while maintaining classification rates. ASLP follows Maximum Entropy Inference of classic statistical mechanics to maximise prediction entropy with respect to missing information. It performs this while: (1) preserving classification accuracy on known data as a conservative solution, or (2) specifically improves model calibration degree by minimising the gap between the prediction accuracy and expected confidence of the target training label. Extensive results demonstrate that ASLP can significantly improve calibration degrees of dense binary classification models on both in-distribution and out-of-distribution data. The code is available on https://github.com/Carlisle-Liu/ASLP.
Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels
Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: COrrection rightarrow ModificatIon rightarrow balanCe, abbreviated as \method{}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets.
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
Solving complex classification tasks using deep neural networks typically requires large amounts of annotated data. However, corresponding class labels are noisy when provided by error-prone annotators, e.g., crowd workers. Training standard deep neural networks leads to subpar performances in such multi-annotator supervised learning settings. We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL). A ground truth and an annotator performance model are jointly trained in an end-to-end learning approach. The ground truth model learns to predict instances' true class labels, while the annotator performance model infers probabilistic estimates of annotators' performances. A modular network architecture enables us to make varying assumptions regarding annotators' performances, e.g., an optional class or instance dependency. Further, we learn annotator embeddings to estimate annotators' densities within a latent space as proxies of their potentially correlated annotations. Together with a weighted loss function, we improve the learning from correlated annotation patterns. In a comprehensive evaluation, we examine three research questions about multi-annotator supervised learning. Our findings indicate MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
A Loss Curvature Perspective on Training Instability in Deep Learning
In this work, we study the evolution of the loss Hessian across many classification tasks in order to understand the effect the curvature of the loss has on the training dynamics. Whereas prior work has focused on how different learning rates affect the loss Hessian observed during training, we also analyze the effects of model initialization, architectural choices, and common training heuristics such as gradient clipping and learning rate warmup. Our results demonstrate that successful model and hyperparameter choices allow the early optimization trajectory to either avoid -- or navigate out of -- regions of high curvature and into flatter regions that tolerate a higher learning rate. Our results suggest a unifying perspective on how disparate mitigation strategies for training instability ultimately address the same underlying failure mode of neural network optimization, namely poor conditioning. Inspired by the conditioning perspective, we show that learning rate warmup can improve training stability just as much as batch normalization, layer normalization, MetaInit, GradInit, and Fixup initialization.
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
Data pruning aims to obtain lossless performances with less overall cost. A common approach is to filter out samples that make less contribution to the training. This could lead to gradient expectation bias compared to the original data. To solve this problem, we propose InfoBatch, a novel framework aiming to achieve lossless training acceleration by unbiased dynamic data pruning. Specifically, InfoBatch randomly prunes a portion of less informative samples based on the loss distribution and rescales the gradients of the remaining samples to approximate the original gradient. As a plug-and-play and architecture-agnostic framework, InfoBatch consistently obtains lossless training results on classification, semantic segmentation, vision pertaining, and instruction fine-tuning tasks. On CIFAR10/100, ImageNet-1K, and ADE20K, InfoBatch losslessly saves 40\% overall cost. For pertaining MAE and diffusion model, InfoBatch can respectively save 24.8\% and 27\% cost. For LLaMA instruction fine-tuning, InfoBatch is also able to save 20\% cost and is compatible with coreset selection methods. The code is publicly available at https://github.com/henryqin1997/InfoBatch{github.com/NUS-HPC-AI-Lab/InfoBatch}.
One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective
A deep hashing model typically has two main learning objectives: to make the learned binary hash codes discriminative and to minimize a quantization error. With further constraints such as bit balance and code orthogonality, it is not uncommon for existing models to employ a large number (>4) of losses. This leads to difficulties in model training and subsequently impedes their effectiveness. In this work, we propose a novel deep hashing model with only a single learning objective. Specifically, we show that maximizing the cosine similarity between the continuous codes and their corresponding binary orthogonal codes can ensure both hash code discriminativeness and quantization error minimization. Further, with this learning objective, code balancing can be achieved by simply using a Batch Normalization (BN) layer and multi-label classification is also straightforward with label smoothing. The result is an one-loss deep hashing model that removes all the hassles of tuning the weights of various losses. Importantly, extensive experiments show that our model is highly effective, outperforming the state-of-the-art multi-loss hashing models on three large-scale instance retrieval benchmarks, often by significant margins. Code is available at https://github.com/kamwoh/orthohash
Class-Aware Contrastive Optimization for Imbalanced Text Classification
The unique characteristics of text data make classification tasks a complex problem. Advances in unsupervised and semi-supervised learning and autoencoder architectures addressed several challenges. However, they still struggle with imbalanced text classification tasks, a common scenario in real-world applications, demonstrating a tendency to produce embeddings with unfavorable properties, such as class overlap. In this paper, we show that leveraging class-aware contrastive optimization combined with denoising autoencoders can successfully tackle imbalanced text classification tasks, achieving better performance than the current state-of-the-art. Concretely, our proposal combines reconstruction loss with contrastive class separation in the embedding space, allowing a better balance between the truthfulness of the generated embeddings and the model's ability to separate different classes. Compared with an extensive set of traditional and state-of-the-art competing methods, our proposal demonstrates a notable increase in performance across a wide variety of text datasets.
Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL.
AI-Generated Text Detection and Classification Based on BERT Deep Learning Algorithm
AI-generated text detection plays an increasingly important role in various fields. In this study, we developed an efficient AI-generated text detection model based on the BERT algorithm, which provides new ideas and methods for solving related problems. In the data preprocessing stage, a series of steps were taken to process the text, including operations such as converting to lowercase, word splitting, removing stop words, stemming extraction, removing digits, and eliminating redundant spaces, to ensure data quality and accuracy. By dividing the dataset into a training set and a test set in the ratio of 60% and 40%, and observing the changes in the accuracy and loss values during the training process, we found that the model performed well during the training process. The accuracy increases steadily from the initial 94.78% to 99.72%, while the loss value decreases from 0.261 to 0.021 and converges gradually, which indicates that the BERT model is able to detect AI-generated text with high accuracy and the prediction results are gradually approaching the real classification results. Further analysis of the results of the training and test sets reveals that in terms of loss value, the average loss of the training set is 0.0565, while the average loss of the test set is 0.0917, showing a slightly higher loss value. As for the accuracy, the average accuracy of the training set reaches 98.1%, while the average accuracy of the test set is 97.71%, which is not much different from each other, indicating that the model has good generalisation ability. In conclusion, the AI-generated text detection model based on the BERT algorithm proposed in this study shows high accuracy and stability in experiments, providing an effective solution for related fields.
Paying Attention to Astronomical Transients: Introducing the Time-series Transformer for Photometric Classification
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Optimizing Deep Learning Models to Address Class Imbalance in Code Comment Classification
Developers rely on code comments to document their work, track issues, and understand the source code. As such, comments provide valuable insights into developers' understanding of their code and describe their various intentions in writing the surrounding code. Recent research leverages natural language processing and deep learning to classify comments based on developers' intentions. However, such labelled data are often imbalanced, causing learning models to perform poorly. This work investigates the use of different weighting strategies of the loss function to mitigate the scarcity of certain classes in the dataset. In particular, various RoBERTa-based transformer models are fine-tuned by means of a hyperparameter search to identify their optimal parameter configurations. Additionally, we fine-tuned the transformers with different weighting strategies for the loss function to address class imbalances. Our approach outperforms the STACC baseline by 8.9 per cent on the NLBSE'25 Tool Competition dataset in terms of the average F1_c score, and exceeding the baseline approach in 17 out of 19 cases with a gain ranging from -5.0 to 38.2. The source code is publicly available at https://github.com/moritzmock/NLBSE2025.
Generalized Mean Absolute Directional Loss as a Solution to Overfitting and High Transaction Costs in Machine Learning Models Used in High-Frequency Algorithmic Investment Strategies
Regardless of the selected asset class and the level of model complexity (Transformer versus LSTM versus Perceptron/RNN), the GMADL loss function produces superior results than standard MSE-type loss functions and has better numerical properties in the context of optimization than MADL. Better results mean the possibility of achieving a higher risk-weighted return based on buy and sell signals built on forecasts generated by a given theoretical model estimated using the GMADL versus MSE or MADL function. In practice, GMADL solves the problem of selecting the most preferable feature in both classification and regression problems, improving the performance of each estimation. What is important is that, through additional parameterization, GMADL also solves the problem of optimizing investment systems on high-frequency data in such a way that they focus on strategy variants that contain fewer transactions so that transaction costs do not reduce the effectiveness of a given strategy to zero. Moreover, the implementation leverages state-of-the-art machine learning tools, including frameworks for hyperparameter tuning, architecture testing, and walk-forward optimization, ensuring robust and scalable solutions for real-world algorithmic trading.
A new approach for fine-tuning sentence transformers for intent classification and out-of-scope detection tasks
In virtual assistant (VA) systems it is important to reject or redirect user queries that fall outside the scope of the system. One of the most accurate approaches for out-of-scope (OOS) rejection is to combine it with the task of intent classification on in-scope queries, and to use methods based on the similarity of embeddings produced by transformer-based sentence encoders. Typically, such encoders are fine-tuned for the intent-classification task, using cross-entropy loss. Recent work has shown that while this produces suitable embeddings for the intent-classification task, it also tends to disperse in-scope embeddings over the full sentence embedding space. This causes the in-scope embeddings to potentially overlap with OOS embeddings, thereby making OOS rejection difficult. This is compounded when OOS data is unknown. To mitigate this issue our work proposes to regularize the cross-entropy loss with an in-scope embedding reconstruction loss learned using an auto-encoder. Our method achieves a 1-4% improvement in the area under the precision-recall curve for rejecting out-of-sample (OOS) instances, without compromising intent classification performance.
Loss Functions and Metrics in Deep Learning
When training or evaluating deep learning models, two essential parts are picking the proper loss function and deciding on performance metrics. In this paper, we provide a comprehensive overview of the most common loss functions and metrics used across many different types of deep learning tasks, from general tasks such as regression and classification to more specific tasks in Computer Vision and Natural Language Processing. We introduce the formula for each loss and metric, discuss their strengths and limitations, and describe how these methods can be applied to various problems within deep learning. This work can serve as a reference for researchers and practitioners in the field, helping them make informed decisions when selecting the most appropriate loss function and performance metrics for their deep learning projects.
Improving Music Genre Classification from Multi-Modal Properties of Music and Genre Correlations Perspective
Music genre classification has been widely studied in past few years for its various applications in music information retrieval. Previous works tend to perform unsatisfactorily, since those methods only use audio content or jointly use audio content and lyrics content inefficiently. In addition, as genres normally co-occur in a music track, it is desirable to capture and model the genre correlations to improve the performance of multi-label music genre classification. To solve these issues, we present a novel multi-modal method leveraging audio-lyrics contrastive loss and two symmetric cross-modal attention, to align and fuse features from audio and lyrics. Furthermore, based on the nature of the multi-label classification, a genre correlations extraction module is presented to capture and model potential genre correlations. Extensive experiments demonstrate that our proposed method significantly surpasses other multi-label music genre classification methods and achieves state-of-the-art result on Music4All dataset.
Well-classified Examples are Underestimated in Classification with Deep Neural Networks
The conventional wisdom behind learning deep classification models is to focus on bad-classified examples and ignore well-classified examples that are far from the decision boundary. For instance, when training with cross-entropy loss, examples with higher likelihoods (i.e., well-classified examples) contribute smaller gradients in back-propagation. However, we theoretically show that this common practice hinders representation learning, energy optimization, and margin growth. To counteract this deficiency, we propose to reward well-classified examples with additive bonuses to revive their contribution to the learning process. This counterexample theoretically addresses these three issues. We empirically support this claim by directly verifying the theoretical results or significant performance improvement with our counterexample on diverse tasks, including image classification, graph classification, and machine translation. Furthermore, this paper shows that we can deal with complex scenarios, such as imbalanced classification, OOD detection, and applications under adversarial attacks because our idea can solve these three issues. Code is available at: https://github.com/lancopku/well-classified-examples-are-underestimated.
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
Deep multitask networks, in which one neural network produces multiple predictive outputs, can offer better speed and performance than their single-task counterparts but are challenging to train properly. We present a gradient normalization (GradNorm) algorithm that automatically balances training in deep multitask models by dynamically tuning gradient magnitudes. We show that for various network architectures, for both regression and classification tasks, and on both synthetic and real datasets, GradNorm improves accuracy and reduces overfitting across multiple tasks when compared to single-task networks, static baselines, and other adaptive multitask loss balancing techniques. GradNorm also matches or surpasses the performance of exhaustive grid search methods, despite only involving a single asymmetry hyperparameter alpha. Thus, what was once a tedious search process that incurred exponentially more compute for each task added can now be accomplished within a few training runs, irrespective of the number of tasks. Ultimately, we will demonstrate that gradient manipulation affords us great control over the training dynamics of multitask networks and may be one of the keys to unlocking the potential of multitask learning.
Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
Numerous deep learning applications benefit from multi-task learning with multiple regression and classification objectives. In this paper we make the observation that the performance of such systems is strongly dependent on the relative weighting between each task's loss. Tuning these weights by hand is a difficult and expensive process, making multi-task learning prohibitive in practice. We propose a principled approach to multi-task deep learning which weighs multiple loss functions by considering the homoscedastic uncertainty of each task. This allows us to simultaneously learn various quantities with different units or scales in both classification and regression settings. We demonstrate our model learning per-pixel depth regression, semantic and instance segmentation from a monocular input image. Perhaps surprisingly, we show our model can learn multi-task weightings and outperform separate models trained individually on each task.
Universal Embedding Function for Traffic Classification via QUIC Domain Recognition Pretraining: A Transfer Learning Success
Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we follow a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to five well-known TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a problem for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. The proposed solution, based on nearest neighbors search in the embedding space, surpasses SOTA performance on four of the five TC datasets. A comparison with a baseline method utilizing raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We published the model architecture, trained weights, and transfer learning experiments.
Fine-Tuning a Time Series Foundation Model with Wasserstein Loss
Inspired by recent advancements in large language models (LLMs) for Natural Language Processing (NLP), there has been a surge in research focused on developing foundational models for time series forecasting. One approach involves training LLM architectures on tokenized time series data using cross-entropy loss. Although this method has demonstrated promising results, cross-entropy loss is primarily designed for classification tasks and does not account for the distance between classes. To address this limitation, we propose using the Wasserstein loss for such architectures. To validate our approach, we fine-tuned a foundational time series model on 22 zero-shot datasets, comparing the performance of cross-entropy loss with that of Wasserstein loss. Our results demonstrate that replacing cross-entropy loss with Wasserstein loss significantly improves point estimation.
RECALL: Rehearsal-free Continual Learning for Object Classification
Convolutional neural networks show remarkable results in classification but struggle with learning new things on the fly. We present a novel rehearsal-free approach, where a deep neural network is continually learning new unseen object categories without saving any data of prior sequences. Our approach is called RECALL, as the network recalls categories by calculating logits for old categories before training new ones. These are then used during training to avoid changing the old categories. For each new sequence, a new head is added to accommodate the new categories. To mitigate forgetting, we present a regularization strategy where we replace the classification with a regression. Moreover, for the known categories, we propose a Mahalanobis loss that includes the variances to account for the changing densities between known and unknown categories. Finally, we present a novel dataset for continual learning, especially suited for object recognition on a mobile robot (HOWS-CL-25), including 150,795 synthetic images of 25 household object categories. Our approach RECALL outperforms the current state of the art on CORe50 and iCIFAR-100 and reaches the best performance on HOWS-CL-25.
A Capsule Network for Hierarchical Multi-Label Image Classification
Image classification is one of the most important areas in computer vision. Hierarchical multi-label classification applies when a multi-class image classification problem is arranged into smaller ones based upon a hierarchy or taxonomy. Thus, hierarchical classification modes generally provide multiple class predictions on each instance, whereby these are expected to reflect the structure of image classes as related to one another. In this paper, we propose a multi-label capsule network (ML-CapsNet) for hierarchical classification. Our ML-CapsNet predicts multiple image classes based on a hierarchical class-label tree structure. To this end, we present a loss function that takes into account the multi-label predictions of the network. As a result, the training approach for our ML-CapsNet uses a coarse to fine paradigm while maintaining consistency with the structure in the classification levels in the label-hierarchy. We also perform experiments using widely available datasets and compare the model with alternatives elsewhere in the literature. In our experiments, our ML-CapsNet yields a margin of improvement with respect to these alternative methods.
Open Vocabulary Extreme Classification Using Generative Models
The extreme multi-label classification (XMC) task aims at tagging content with a subset of labels from an extremely large label set. The label vocabulary is typically defined in advance by domain experts and assumed to capture all necessary tags. However in real world scenarios this label set, although large, is often incomplete and experts frequently need to refine it. To develop systems that simplify this process, we introduce the task of open vocabulary XMC (OXMC): given a piece of content, predict a set of labels, some of which may be outside of the known tag set. Hence, in addition to not having training data for some labels - as is the case in zero-shot classification - models need to invent some labels on-the-fly. We propose GROOV, a fine-tuned seq2seq model for OXMC that generates the set of labels as a flat sequence and is trained using a novel loss independent of predicted label order. We show the efficacy of the approach, experimenting with popular XMC datasets for which GROOV is able to predict meaningful labels outside the given vocabulary while performing on par with state-of-the-art solutions for known labels.
Per-Pixel Classification is Not All You Need for Semantic Segmentation
Modern approaches typically formulate semantic segmentation as a per-pixel classification task, while instance-level segmentation is handled with an alternative mask classification. Our key insight: mask classification is sufficiently general to solve both semantic- and instance-level segmentation tasks in a unified manner using the exact same model, loss, and training procedure. Following this observation, we propose MaskFormer, a simple mask classification model which predicts a set of binary masks, each associated with a single global class label prediction. Overall, the proposed mask classification-based method simplifies the landscape of effective approaches to semantic and panoptic segmentation tasks and shows excellent empirical results. In particular, we observe that MaskFormer outperforms per-pixel classification baselines when the number of classes is large. Our mask classification-based method outperforms both current state-of-the-art semantic (55.6 mIoU on ADE20K) and panoptic segmentation (52.7 PQ on COCO) models.
Hyperspherical embedding for novel class classification
Deep learning models have become increasingly useful in many different industries. On the domain of image classification, convolutional neural networks proved the ability to learn robust features for the closed set problem, as shown in many different datasets, such as MNIST FASHIONMNIST, CIFAR10, CIFAR100, and IMAGENET. These approaches use deep neural networks with dense layers with softmax activation functions in order to learn features that can separate classes in a latent space. However, this traditional approach is not useful for identifying classes unseen on the training set, known as the open set problem. A similar problem occurs in scenarios involving learning on small data. To tackle both problems, few-shot learning has been proposed. In particular, metric learning learns features that obey constraints of a metric distance in the latent space in order to perform classification. However, while this approach proves to be useful for the open set problem, current implementation requires pair-wise training, where both positive and negative examples of similar images are presented during the training phase, which limits the applicability of these approaches in large data or large class scenarios given the combinatorial nature of the possible inputs.In this paper, we present a constraint-based approach applied to the representations in the latent space under the normalized softmax loss, proposed by[18]. We experimentally validate the proposed approach for the classification of unseen classes on different datasets using both metric learning and the normalized softmax loss, on disjoint and joint scenarios. Our results show that not only our proposed strategy can be efficiently trained on larger set of classes, as it does not require pairwise learning, but also present better classification results than the metric learning strategies surpassing its accuracy by a significant margin.
GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes
The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models
In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.
Revisiting Hierarchical Text Classification: Inference and Metrics
Hierarchical text classification (HTC) is the task of assigning labels to a text within a structured space organized as a hierarchy. Recent works treat HTC as a conventional multilabel classification problem, therefore evaluating it as such. We instead propose to evaluate models based on specifically designed hierarchical metrics and we demonstrate the intricacy of metric choice and prediction inference method. We introduce a new challenging dataset and we evaluate fairly, recent sophisticated models, comparing them with a range of simple but strong baselines, including a new theoretically motivated loss. Finally, we show that those baselines are very often competitive with the latest models. This highlights the importance of carefully considering the evaluation methodology when proposing new methods for HTC. Code implementation and dataset are available at https://github.com/RomanPlaud/revisitingHTC.
RoMa: Revisiting Robust Losses for Dense Feature Matching
Dense feature matching is an important computer vision task that involves estimating all correspondences between two images of a 3D scene. In this paper, we revisit robust losses for matching from a Markov chain perspective, yielding theoretical insights and large gains in performance. We begin by constructing a unifying formulation of matching as a Markov chain, based on which we identify two key stages which we argue should be decoupled for matching. The first is the coarse stage, where the estimated result needs to be globally consistent. The second is the refinement stage, where the model needs precise localization capabilities. Inspired by the insight that these stages concern distinct issues, we propose a coarse matcher following the regression-by-classification paradigm that provides excellent globally consistent, albeit not exactly localized, matches. This is followed by a local feature refinement stage using well-motivated robust regression losses, yielding extremely precise matches. Our proposed approach, which we call RoMa, achieves significant improvements compared to the state-of-the-art. Code is available at https://github.com/Parskatt/RoMa
Tackling Data Heterogeneity in Federated Learning via Loss Decomposition
Federated Learning (FL) is a rising approach towards collaborative and privacy-preserving machine learning where large-scale medical datasets remain localized to each client. However, the issue of data heterogeneity among clients often compels local models to diverge, leading to suboptimal global models. To mitigate the impact of data heterogeneity on FL performance, we start with analyzing how FL training influence FL performance by decomposing the global loss into three terms: local loss, distribution shift loss and aggregation loss. Remarkably, our loss decomposition reveals that existing local training-based FL methods attempt to reduce the distribution shift loss, while the global aggregation-based FL methods propose better aggregation strategies to reduce the aggregation loss. Nevertheless, a comprehensive joint effort to minimize all three terms is currently limited in the literature, leading to subpar performance when dealing with data heterogeneity challenges. To fill this gap, we propose a novel FL method based on global loss decomposition, called FedLD, to jointly reduce these three loss terms. Our FedLD involves a margin control regularization in local training to reduce the distribution shift loss, and a principal gradient-based server aggregation strategy to reduce the aggregation loss. Notably, under different levels of data heterogeneity, our strategies achieve better and more robust performance on retinal and chest X-ray classification compared to other FL algorithms. Our code is available at https://github.com/Zeng-Shuang/FedLD.
Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing
Face recognition technology has become an integral part of modern security systems and user authentication processes. However, these systems are vulnerable to spoofing attacks and can easily be circumvented. Most prior research in face anti-spoofing (FAS) approaches it as a two-class classification task where models are trained on real samples and known spoof attacks and tested for detection performance on unknown spoof attacks. However, in practice, FAS should be treated as a one-class classification task where, while training, one cannot assume any knowledge regarding the spoof samples a priori. In this paper, we reformulate the face anti-spoofing task from a one-class perspective and propose a novel hyperbolic one-class classification framework. To train our network, we use a pseudo-negative class sampled from the Gaussian distribution with a weighted running mean and propose two novel loss functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate in the hyperbolic space. Additionally, we employ Euclidean feature clipping and gradient clipping to stabilize the training in the hyperbolic space. To the best of our knowledge, this is the first work extending hyperbolic embeddings for face anti-spoofing in a one-class manner. With extensive experiments on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate that our method significantly outperforms the state-of-the-art, achieving better spoof detection performance.
Well-calibrated Confidence Measures for Multi-label Text Classification with a Large Number of Labels
We extend our previous work on Inductive Conformal Prediction (ICP) for multi-label text classification and present a novel approach for addressing the computational inefficiency of the Label Powerset (LP) ICP, arrising when dealing with a high number of unique labels. We present experimental results using the original and the proposed efficient LP-ICP on two English and one Czech language data-sets. Specifically, we apply the LP-ICP on three deep Artificial Neural Network (ANN) classifiers of two types: one based on contextualised (bert) and two on non-contextualised (word2vec) word-embeddings. In the LP-ICP setting we assign nonconformity scores to label-sets from which the corresponding p-values and prediction-sets are determined. Our approach deals with the increased computational burden of LP by eliminating from consideration a significant number of label-sets that will surely have p-values below the specified significance level. This reduces dramatically the computational complexity of the approach while fully respecting the standard CP guarantees. Our experimental results show that the contextualised-based classifier surpasses the non-contextualised-based ones and obtains state-of-the-art performance for all data-sets examined. The good performance of the underlying classifiers is carried on to their ICP counterparts without any significant accuracy loss, but with the added benefits of ICP, i.e. the confidence information encapsulated in the prediction sets. We experimentally demonstrate that the resulting prediction sets can be tight enough to be practically useful even though the set of all possible label-sets contains more than 1e+16 combinations. Additionally, the empirical error rates of the obtained prediction-sets confirm that our outputs are well-calibrated.
CWCL: Cross-Modal Transfer with Continuously Weighted Contrastive Loss
This paper considers contrastive training for cross-modal 0-shot transfer wherein a pre-trained model in one modality is used for representation learning in another domain using pairwise data. The learnt models in the latter domain can then be used for a diverse set of tasks in a zero-shot way, similar to ``Contrastive Language-Image Pre-training (CLIP)'' and ``Locked-image Tuning (LiT)'' that have recently gained considerable attention. Most existing works for cross-modal representation alignment (including CLIP and LiT) use the standard contrastive training objective, which employs sets of positive and negative examples to align similar and repel dissimilar training data samples. However, similarity amongst training examples has a more continuous nature, thus calling for a more `non-binary' treatment. To address this, we propose a novel loss function called Continuously Weighted Contrastive Loss (CWCL) that employs a continuous measure of similarity. With CWCL, we seek to align the embedding space of one modality with another. Owing to the continuous nature of similarity in the proposed loss function, these models outperform existing methods for 0-shot transfer across multiple models, datasets and modalities. Particularly, we consider the modality pairs of image-text and speech-text and our models achieve 5-8% (absolute) improvement over previous state-of-the-art methods in 0-shot image classification and 20-30% (absolute) improvement in 0-shot speech-to-intent classification and keyword classification.
Image-free Classifier Injection for Zero-Shot Classification
Zero-shot learning models achieve remarkable results on image classification for samples from classes that were not seen during training. However, such models must be trained from scratch with specialised methods: therefore, access to a training dataset is required when the need for zero-shot classification arises. In this paper, we aim to equip pre-trained models with zero-shot classification capabilities without the use of image data. We achieve this with our proposed Image-free Classifier Injection with Semantics (ICIS) that injects classifiers for new, unseen classes into pre-trained classification models in a post-hoc fashion without relying on image data. Instead, the existing classifier weights and simple class-wise descriptors, such as class names or attributes, are used. ICIS has two encoder-decoder networks that learn to reconstruct classifier weights from descriptors (and vice versa), exploiting (cross-)reconstruction and cosine losses to regularise the decoding process. Notably, ICIS can be cheaply trained and applied directly on top of pre-trained classification models. Experiments on benchmark ZSL datasets show that ICIS produces unseen classifier weights that achieve strong (generalised) zero-shot classification performance. Code is available at https://github.com/ExplainableML/ImageFreeZSL .
Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes
The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.
SBCFormer: Lightweight Network Capable of Full-size ImageNet Classification at 1 FPS on Single Board Computers
Computer vision has become increasingly prevalent in solving real-world problems across diverse domains, including smart agriculture, fishery, and livestock management. These applications may not require processing many image frames per second, leading practitioners to use single board computers (SBCs). Although many lightweight networks have been developed for mobile/edge devices, they primarily target smartphones with more powerful processors and not SBCs with the low-end CPUs. This paper introduces a CNN-ViT hybrid network called SBCFormer, which achieves high accuracy and fast computation on such low-end CPUs. The hardware constraints of these CPUs make the Transformer's attention mechanism preferable to convolution. However, using attention on low-end CPUs presents a challenge: high-resolution internal feature maps demand excessive computational resources, but reducing their resolution results in the loss of local image details. SBCFormer introduces an architectural design to address this issue. As a result, SBCFormer achieves the highest trade-off between accuracy and speed on a Raspberry Pi 4 Model B with an ARM-Cortex A72 CPU. For the first time, it achieves an ImageNet-1K top-1 accuracy of around 80% at a speed of 1.0 frame/sec on the SBC. Code is available at https://github.com/xyongLu/SBCFormer.
Glauber Generative Model: Discrete Diffusion Models via Binary Classification
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models, to obtain new samples from a distribution given samples from a discrete space. GGM deploys a discrete Markov chain called the heat bath dynamics (or the Glauber dynamics) to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens. Our novel conceptual framework provides an exact reduction of the task of learning the denoising Markov chain to solving a class of binary classification tasks. More specifically, the model learns to classify a given token in a noisy sequence as signal or noise. In contrast, prior works on discrete diffusion models either solve regression problems to learn importance ratios, or minimize loss functions given by variational approximations. We apply GGM to language modeling and image generation, where images are discretized using image tokenizers like VQGANs. We show that it outperforms existing discrete diffusion models in language generation, and demonstrates strong performance for image generation without using dataset-specific image tokenizers. We also show that our model is capable of performing well in zero-shot control settings like text and image infilling.
Conformal Prediction via Regression-as-Classification
Conformal prediction (CP) for regression can be challenging, especially when the output distribution is heteroscedastic, multimodal, or skewed. Some of the issues can be addressed by estimating a distribution over the output, but in reality, such approaches can be sensitive to estimation error and yield unstable intervals.~Here, we circumvent the challenges by converting regression to a classification problem and then use CP for classification to obtain CP sets for regression.~To preserve the ordering of the continuous-output space, we design a new loss function and make necessary modifications to the CP classification techniques.~Empirical results on many benchmarks shows that this simple approach gives surprisingly good results on many practical problems.
Positive Label Is All You Need for Multi-Label Classification
Multi-label classification (MLC) suffers from the inevitable label noise in training data due to the difficulty in annotating various semantic labels in each image. To mitigate the influence of noisy labels, existing methods mainly devote to identifying and correcting the label mistakes via a trained MLC model. However, these methods still involve annoying noisy labels in training, which can result in imprecise recognition of noisy labels and weaken the performance. In this paper, considering that the negative labels are substantially more than positive labels, and most noisy labels are from the negative labels, we directly discard all the negative labels in the dataset, and propose a new method dubbed positive and unlabeled multi-label classification (PU-MLC). By extending positive-unlabeled learning into MLC task, our method trains model with only positive labels and unlabeled data, and introduces adaptive re-balance factor and adaptive temperature coefficient in the loss function to alleviate the catastrophic imbalance in label distribution and over-smoothing of probabilities in training. Furthermore, to capture both local and global dependencies in the image, we also introduce a local-global convolution module, which supplements global information into existing convolution layers with no retraining of backbone required. Our PU-MLC is simple and effective, and it is applicable to both MLC and MLC with partial labels (MLC-PL) tasks. Extensive experiments on MS-COCO and PASCAL VOC datasets demonstrate that our PU-MLC achieves significantly improvements on both MLC and MLC-PL settings with even fewer annotations. Code will be released.
MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.
AEM: Attention Entropy Maximization for Multiple Instance Learning based Whole Slide Image Classification
Multiple Instance Learning (MIL) has demonstrated effectiveness in analyzing whole slide images (WSIs), yet it often encounters overfitting challenges in real-world applications, particularly in the form of attention over-concentration. While existing methods to alleviate this issue introduce complex modules or processing steps, such as multiple-stage training and teacher-student distillation, this paper proposes a simple yet effective regularization: Attention Entropy Maximization (AEM). Motivated by our investigation revealing a positive correlation between attention entropy and model performance, AEM incorporates a negative entropy loss for attention values into the standard MIL framework, penalizing overly concentrated attention and encouraging the model to consider a broader range of informative regions in WSIs, potentially improving its generalization capabilities. Compared to existing overfitting mitigation methods, our AEM approach offers advantages of simplicity, efficiency, and versatility. It requires no additional modules or processing steps, involves only one hyperparameter, and demonstrates compatibility with MIL frameworks and techniques. These advantages make AEM particularly attractive for practical applications. We evaluate AEM on three benchmark datasets, demonstrating consistent performance improvements over existing methods. Furthermore, AEM shows high versatility, integrating effectively with four feature extractors, two advanced MIL frameworks, three attention mechanisms, and Subsampling augmentation technique. The source code is available at https://github.com/dazhangyu123/AEM.
Harnessing the Power of Beta Scoring in Deep Active Learning for Multi-Label Text Classification
Within the scope of natural language processing, the domain of multi-label text classification is uniquely challenging due to its expansive and uneven label distribution. The complexity deepens due to the demand for an extensive set of annotated data for training an advanced deep learning model, especially in specialized fields where the labeling task can be labor-intensive and often requires domain-specific knowledge. Addressing these challenges, our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework. It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations. These vector representations guide the diverse selection of informative samples, directly linking this process to the model's expected proper score. Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification, presenting encouraging outcomes across various architectural and dataset scenarios.
Multilingual Detection of Personal Employment Status on Twitter
Detecting disclosures of individuals' employment status on social media can provide valuable information to match job seekers with suitable vacancies, offer social protection, or measure labor market flows. However, identifying such personal disclosures is a challenging task due to their rarity in a sea of social media content and the variety of linguistic forms used to describe them. Here, we examine three Active Learning (AL) strategies in real-world settings of extreme class imbalance, and identify five types of disclosures about individuals' employment status (e.g. job loss) in three languages using BERT-based classification models. Our findings show that, even under extreme imbalance settings, a small number of AL iterations is sufficient to obtain large and significant gains in precision, recall, and diversity of results compared to a supervised baseline with the same number of labels. We also find that no AL strategy consistently outperforms the rest. Qualitative analysis suggests that AL helps focus the attention mechanism of BERT on core terms and adjust the boundaries of semantic expansion, highlighting the importance of interpretable models to provide greater control and visibility into this dynamic learning process.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Perturbation Analysis of Neural Collapse
Training deep neural networks for classification often includes minimizing the training loss beyond the zero training error point. In this phase of training, a "neural collapse" behavior has been observed: the variability of features (outputs of the penultimate layer) of within-class samples decreases and the mean features of different classes approach a certain tight frame structure. Recent works analyze this behavior via idealized unconstrained features models where all the minimizers exhibit exact collapse. However, with practical networks and datasets, the features typically do not reach exact collapse, e.g., because deep layers cannot arbitrarily modify intermediate features that are far from being collapsed. In this paper, we propose a richer model that can capture this phenomenon by forcing the features to stay in the vicinity of a predefined features matrix (e.g., intermediate features). We explore the model in the small vicinity case via perturbation analysis and establish results that cannot be obtained by the previously studied models. For example, we prove reduction in the within-class variability of the optimized features compared to the predefined input features (via analyzing gradient flow on the "central-path" with minimal assumptions), analyze the minimizers in the near-collapse regime, and provide insights on the effect of regularization hyperparameters on the closeness to collapse. We support our theory with experiments in practical deep learning settings.
Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation
Knowledge distillation aims to train a compact student network using soft supervision from a larger teacher network and hard supervision from ground truths. However, determining an optimal knowledge fusion ratio that balances these supervisory signals remains challenging. Prior methods generally resort to a constant or heuristic-based fusion ratio, which often falls short of a proper balance. In this study, we introduce a novel adaptive method for learning a sample-wise knowledge fusion ratio, exploiting both the correctness of teacher and student, as well as how well the student mimics the teacher on each sample. Our method naturally leads to the intra-sample trilateral geometric relations among the student prediction (S), teacher prediction (T), and ground truth (G). To counterbalance the impact of outliers, we further extend to the inter-sample relations, incorporating the teacher's global average prediction T for samples within the same class. A simple neural network then learns the implicit mapping from the intra- and inter-sample relations to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization manner. Our approach provides a simple, practical, and adaptable solution for knowledge distillation that can be employed across various architectures and model sizes. Extensive experiments demonstrate consistent improvements over other loss re-weighting methods on image classification, attack detection, and click-through rate prediction.
ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning
In this paper, we introduce a framework ARBEx, a novel attentive feature extraction framework driven by Vision Transformer with reliability balancing to cope against poor class distributions, bias, and uncertainty in the facial expression learning (FEL) task. We reinforce several data pre-processing and refinement methods along with a window-based cross-attention ViT to squeeze the best of the data. We also employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions with reliability balancing, which is a strategy that leverages anchor points, attention scores, and confidence values to enhance the resilience of label predictions. To ensure correct label classification and improve the models' discriminative power, we introduce anchor loss, which encourages large margins between anchor points. Additionally, the multi-head self-attention mechanism, which is also trainable, plays an integral role in identifying accurate labels. This approach provides critical elements for improving the reliability of predictions and has a substantial positive effect on final prediction capabilities. Our adaptive model can be integrated with any deep neural network to forestall challenges in various recognition tasks. Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.
Accuracy, Interpretability, and Differential Privacy via Explainable Boosting
We show that adding differential privacy to Explainable Boosting Machines (EBMs), a recent method for training interpretable ML models, yields state-of-the-art accuracy while protecting privacy. Our experiments on multiple classification and regression datasets show that DP-EBM models suffer surprisingly little accuracy loss even with strong differential privacy guarantees. In addition to high accuracy, two other benefits of applying DP to EBMs are: a) trained models provide exact global and local interpretability, which is often important in settings where differential privacy is needed; and b) the models can be edited after training without loss of privacy to correct errors which DP noise may have introduced.
It Takes Two to Tango: Mixup for Deep Metric Learning
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing both examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We also introduce a new metric - utilization, to demonstrate that by mixing examples during training, we are exploring areas of the embedding space beyond the training classes, thereby improving representations. To validate the effect of improved representations, we show that mixing inputs, intermediate representations or embeddings along with target labels significantly outperforms state-of-the-art metric learning methods on four benchmark deep metric learning datasets.
Multi-aspect Knowledge Distillation with Large Language Model
Recent advancements in deep learning have significantly improved performance on computer vision tasks. Previous image classification methods primarily modify model architectures or add features, and they optimize models using cross-entropy loss on class logits. Since they focus on classifying images with considering class labels, these methods may struggle to learn various aspects of classes (e.g., natural positions and shape changes). Rethinking the previous approach from a novel view, we propose a multi-aspect knowledge distillation method using Multimodal Large Language Models (MLLMs). Our approach involves: 1) querying Large Language Model with multi-aspect questions relevant to the knowledge we want to transfer to the model, 2) extracting corresponding logits from MLLM, and 3) expanding the model's output dimensions to distill these multi-aspect logits. We then apply cross-entropy loss to class logits and binary cross-entropy loss to multi-aspect logits. Through our method, the model can learn not only the knowledge about visual aspects but also the abstract and complex aspects that require a deeper understanding. We primarily apply our method to image classification, and to explore the potential for extending our model, we expand it to other tasks, such as object detection. In all experimental results, our method improves the performance of the baselines. Additionally, we analyze the effect of multi-aspect knowledge distillation. These results demonstrate that our method can transfer knowledge about various aspects to the model and the aspect knowledge can enhance model performance in computer vision tasks. This paper demonstrates the great potential of multi-aspect knowledge distillation, and we believe it offers a promising direction for future research in computer vision and beyond.
MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report
In this paper, we introduce a novel Multi-Modal Contrastive Pre-training Framework that synergistically combines X-rays, electrocardiograms (ECGs), and radiology/cardiology reports. Our approach leverages transformers to encode these diverse modalities into a unified representation space, aiming to enhance diagnostic accuracy and facilitate comprehensive patient assessments. We utilize LoRA-Peft to significantly reduce trainable parameters in the LLM and incorporate recent linear attention dropping strategy in the Vision Transformer(ViT) for smoother attention. Furthermore, we provide novel multimodal attention explanations and retrieval for our model. To the best of our knowledge, we are the first to propose an integrated model that combines X-ray, ECG, and Radiology/Cardiology Report with this approach. By utilizing contrastive loss, MoRE effectively aligns modality-specific features into a coherent embedding, which supports various downstream tasks such as zero-shot classification and multimodal retrieval. Employing our proposed methodology, we achieve state-of-the-art (SOTA) on the Mimic-IV, CheXpert, Edema Severity, and PtbXl downstream datasets, surpassing existing multimodal approaches. Our proposed framework shows significant improvements in capturing intricate inter-modal relationships and its robustness in medical diagnosis that establishes a framework for future research in multimodal learning in the healthcare sector.
Rethinking Pseudo Labels for Semi-Supervised Object Detection
Recent advances in semi-supervised object detection (SSOD) are largely driven by consistency-based pseudo-labeling methods for image classification tasks, producing pseudo labels as supervisory signals. However, when using pseudo labels, there is a lack of consideration in localization precision and amplified class imbalance, both of which are critical for detection tasks. In this paper, we introduce certainty-aware pseudo labels tailored for object detection, which can effectively estimate the classification and localization quality of derived pseudo labels. This is achieved by converting conventional localization as a classification task followed by refinement. Conditioned on classification and localization quality scores, we dynamically adjust the thresholds used to generate pseudo labels and reweight loss functions for each category to alleviate the class imbalance problem. Extensive experiments demonstrate that our method improves state-of-the-art SSOD performance by 1-2% AP on COCO and PASCAL VOC while being orthogonal and complementary to most existing methods. In the limited-annotation regime, our approach improves supervised baselines by up to 10% AP using only 1-10% labeled data from COCO.
Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co./datasets/Yvnminc/ExioNAICS.
Jacobian Descent for Multi-Objective Optimization
Many optimization problems are inherently multi-objective. To address them, we formalize Jacobian descent (JD), a direct generalization of gradient descent for vector-valued functions. Each step of this algorithm relies on a Jacobian matrix consisting of one gradient per objective. The aggregator, responsible for reducing this matrix into an update vector, characterizes JD. While the multi-task learning literature already contains a variety of aggregators, they often lack some natural properties. In particular, the update should not conflict with any objective and should scale proportionally to the norm of each gradient. We propose a new aggregator specifically designed to satisfy this. Emphasizing conflict between objectives, we then highlight direct applications for our methods. Most notably, we introduce instance-wise risk minimization (IWRM), a learning paradigm in which the loss of each training example is considered a separate objective. On simple image classification tasks, IWRM exhibits promising results compared to the direct minimization of the average loss. The performance of our aggregator in those experiments also corroborates our theoretical findings. Lastly, as speed is the main limitation of JD, we provide a path towards a more efficient implementation.
ACLS: Adaptive and Conditional Label Smoothing for Network Calibration
We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.
HealthiVert-GAN: A Novel Framework of Pseudo-Healthy Vertebral Image Synthesis for Interpretable Compression Fracture Grading
Osteoporotic vertebral compression fractures (VCFs) are prevalent in the elderly population, typically assessed on computed tomography (CT) scans by evaluating vertebral height loss. This assessment helps determine the fracture's impact on spinal stability and the need for surgical intervention. However, clinical data indicate that many VCFs exhibit irregular compression, complicating accurate diagnosis. While deep learning methods have shown promise in aiding VCFs screening, they often lack interpretability and sufficient sensitivity, limiting their clinical applicability. To address these challenges, we introduce a novel vertebra synthesis-height loss quantification-VCFs grading framework. Our proposed model, HealthiVert-GAN, utilizes a coarse-to-fine synthesis network designed to generate pseudo-healthy vertebral images that simulate the pre-fracture state of fractured vertebrae. This model integrates three auxiliary modules that leverage the morphology and height information of adjacent healthy vertebrae to ensure anatomical consistency. Additionally, we introduce the Relative Height Loss of Vertebrae (RHLV) as a quantification metric, which divides each vertebra into three sections to measure height loss between pre-fracture and post-fracture states, followed by fracture severity classification using a Support Vector Machine (SVM). Our approach achieves state-of-the-art classification performance on both the Verse2019 dataset and our private dataset, and it provides cross-sectional distribution maps of vertebral height loss. This practical tool enhances diagnostic sensitivity in clinical settings and assisting in surgical decision-making. Our code is available: https://github.com/zhibaishouheilab/HealthiVert-GAN.
PDiscoNet: Semantically consistent part discovery for fine-grained recognition
Fine-grained classification often requires recognizing specific object parts, such as beak shape and wing patterns for birds. Encouraging a fine-grained classification model to first detect such parts and then using them to infer the class could help us gauge whether the model is indeed looking at the right details better than with interpretability methods that provide a single attribution map. We propose PDiscoNet to discover object parts by using only image-level class labels along with priors encouraging the parts to be: discriminative, compact, distinct from each other, equivariant to rigid transforms, and active in at least some of the images. In addition to using the appropriate losses to encode these priors, we propose to use part-dropout, where full part feature vectors are dropped at once to prevent a single part from dominating in the classification, and part feature vector modulation, which makes the information coming from each part distinct from the perspective of the classifier. Our results on CUB, CelebA, and PartImageNet show that the proposed method provides substantially better part discovery performance than previous methods while not requiring any additional hyper-parameter tuning and without penalizing the classification performance. The code is available at https://github.com/robertdvdk/part_detection.
ASR is all you need: cross-modal distillation for lip reading
The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.
Enhancing the "Immunity" of Mixture-of-Experts Networks for Adversarial Defense
Recent studies have revealed the vulnerability of Deep Neural Networks (DNNs) to adversarial examples, which can easily fool DNNs into making incorrect predictions. To mitigate this deficiency, we propose a novel adversarial defense method called "Immunity" (Innovative MoE with MUtual information \& positioN stabilITY) based on a modified Mixture-of-Experts (MoE) architecture in this work. The key enhancements to the standard MoE are two-fold: 1) integrating of Random Switch Gates (RSGs) to obtain diverse network structures via random permutation of RSG parameters at evaluation time, despite of RSGs being determined after one-time training; 2) devising innovative Mutual Information (MI)-based and Position Stability-based loss functions by capitalizing on Grad-CAM's explanatory power to increase the diversity and the causality of expert networks. Notably, our MI-based loss operates directly on the heatmaps, thereby inducing subtler negative impacts on the classification performance when compared to other losses of the same type, theoretically. Extensive evaluation validates the efficacy of the proposed approach in improving adversarial robustness against a wide range of attacks.
Doubly Robust Self-Training
Self-training is an important technique for solving semi-supervised learning problems. It leverages unlabeled data by generating pseudo-labels and combining them with a limited labeled dataset for training. The effectiveness of self-training heavily relies on the accuracy of these pseudo-labels. In this paper, we introduce doubly robust self-training, a novel semi-supervised algorithm that provably balances between two extremes. When the pseudo-labels are entirely incorrect, our method reduces to a training process solely using labeled data. Conversely, when the pseudo-labels are completely accurate, our method transforms into a training process utilizing all pseudo-labeled data and labeled data, thus increasing the effective sample size. Through empirical evaluations on both the ImageNet dataset for image classification and the nuScenes autonomous driving dataset for 3D object detection, we demonstrate the superiority of the doubly robust loss over the standard self-training baseline.
Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition
Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: https://github.com/arkel23/CLCA
MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder
Within the domain of medical analysis, extensive research has explored the potential of mutual learning between Masked Autoencoders(MAEs) and multimodal data. However, the impact of MAEs on intermodality remains a key challenge. We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis. We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data, a common scenario in medical diagnostics. We verify that masking an image does not affect inter-modal learning. Furthermore, we propose the SVD loss to enhance the representation learning for characteristics of medical images, aiming to improve classification accuracy by leveraging the structural intricacies of such data. Our theory posits that masking encourages semantic preservation, robust feature extraction, regularization, domain adaptation, and invariance learning. Lastly, we validate using language will improve the zero-shot performance for the medical image analysis. MedFLIP's scaling of the masking process marks an advancement in the field, offering a pathway to rapid and precise medical image analysis without the traditional computational bottlenecks. Through experiments and validation, MedFLIP demonstrates efficient performance improvements, helps for future research and application in medical diagnostics.
BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing
Although mission-critical applications require the use of deep neural networks (DNNs), their continuous execution at mobile devices results in a significant increase in energy consumption. While edge offloading can decrease energy consumption, erratic patterns in channel quality, network and edge server load can lead to severe disruption of the system's key operations. An alternative approach, called split computing, generates compressed representations within the model (called "bottlenecks"), to reduce bandwidth usage and energy consumption. Prior work has proposed approaches that introduce additional layers, to the detriment of energy consumption and latency. For this reason, we propose a new framework called BottleFit, which, in addition to targeted DNN architecture modifications, includes a novel training strategy to achieve high accuracy even with strong compression rates. We apply BottleFit on cutting-edge DNN models in image classification, and show that BottleFit achieves 77.1% data compression with up to 0.6% accuracy loss on ImageNet dataset, while state of the art such as SPINN loses up to 6% in accuracy. We experimentally measure the power consumption and latency of an image classification application running on an NVIDIA Jetson Nano board (GPU-based) and a Raspberry PI board (GPU-less). We show that BottleFit decreases power consumption and latency respectively by up to 49% and 89% with respect to (w.r.t.) local computing and by 37% and 55% w.r.t. edge offloading. We also compare BottleFit with state-of-the-art autoencoders-based approaches, and show that (i) BottleFit reduces power consumption and execution time respectively by up to 54% and 44% on the Jetson and 40% and 62% on Raspberry PI; (ii) the size of the head model executed on the mobile device is 83 times smaller. We publish the code repository for reproducibility of the results in this study.
Agent-aware State Estimation in Autonomous Vehicles
Autonomous systems often operate in environments where the behavior of multiple agents is coordinated by a shared global state. Reliable estimation of the global state is thus critical for successfully operating in a multi-agent setting. We introduce agent-aware state estimation -- a framework for calculating indirect estimations of state given observations of the behavior of other agents in the environment. We also introduce transition-independent agent-aware state estimation -- a tractable class of agent-aware state estimation -- and show that it allows the speed of inference to scale linearly with the number of agents in the environment. As an example, we model traffic light classification in instances of complete loss of direct observation. By taking into account observations of vehicular behavior from multiple directions of traffic, our approach exhibits accuracy higher than that of existing traffic light-only HMM methods on a real-world autonomous vehicle data set under a variety of simulated occlusion scenarios.
From Logistic Regression to the Perceptron Algorithm: Exploring Gradient Descent with Large Step Sizes
We focus on the classification problem with a separable dataset, one of the most important and classical problems from machine learning. The standard approach to this task is logistic regression with gradient descent (LR+GD). Recent studies have observed that LR+GD can find a solution with arbitrarily large step sizes, defying conventional optimization theory. Our work investigates this phenomenon and makes three interconnected key observations about LR+GD with large step sizes. First, we find a remarkably simple explanation of why LR+GD with large step sizes solves the classification problem: LR+GD reduces to a batch version of the celebrated perceptron algorithm when the step size gamma to infty. Second, we observe that larger step sizes lead LR+GD to higher logistic losses when it tends to the perceptron algorithm, but larger step sizes also lead to faster convergence to a solution for the classification problem, meaning that logistic loss is an unreliable metric of the proximity to a solution. Surprisingly, high loss values can actually indicate faster convergence. Third, since the convergence rate in terms of loss function values of LR+GD is unreliable, we examine the iteration complexity required by LR+GD with large step sizes to solve the classification problem and prove that this complexity is suboptimal. To address this, we propose a new method, Normalized LR+GD - based on the connection between LR+GD and the perceptron algorithm - with much better theoretical guarantees.
Process Reward Model with Q-Value Rankings
Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks where the accuracy of intermediate steps significantly influences the overall outcome. Existing PRM approaches, primarily framed as classification problems, employ cross-entropy loss to independently evaluate each step's correctness. This method can lead to suboptimal reward distribution and does not adequately address the interdependencies among steps. To address these limitations, we introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process. PQM optimizes Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions. This approach provides a more granular and theoretically grounded methodology for process rewards. Our extensive empirical evaluations across various sampling policies, language model backbones, and multi-step reasoning benchmarks show that PQM outperforms classification-based PRMs. The effectiveness of the comparative loss function is highlighted in our comprehensive ablation studies, confirming PQM's practical efficacy and theoretical advantage.
Out-Of-Domain Unlabeled Data Improves Generalization
We propose a novel framework for incorporating unlabeled data into semi-supervised classification problems, where scenarios involving the minimization of either i) adversarially robust or ii) non-robust loss functions have been considered. Notably, we allow the unlabeled samples to deviate slightly (in total variation sense) from the in-domain distribution. The core idea behind our framework is to combine Distributionally Robust Optimization (DRO) with self-supervised training. As a result, we also leverage efficient polynomial-time algorithms for the training stage. From a theoretical standpoint, we apply our framework on the classification problem of a mixture of two Gaussians in R^d, where in addition to the m independent and labeled samples from the true distribution, a set of n (usually with ngg m) out of domain and unlabeled samples are given as well. Using only the labeled data, it is known that the generalization error can be bounded by proptoleft(d/mright)^{1/2}. However, using our method on both isotropic and non-isotropic Gaussian mixture models, one can derive a new set of analytically explicit and non-asymptotic bounds which show substantial improvement on the generalization error compared to ERM. Our results underscore two significant insights: 1) out-of-domain samples, even when unlabeled, can be harnessed to narrow the generalization gap, provided that the true data distribution adheres to a form of the ``cluster assumption", and 2) the semi-supervised learning paradigm can be regarded as a special case of our framework when there are no distributional shifts. We validate our claims through experiments conducted on a variety of synthetic and real-world datasets.
PromptMRG: Diagnosis-Driven Prompts for Medical Report Generation
Automatic medical report generation (MRG) is of great research value as it has the potential to relieve radiologists from the heavy burden of report writing. Despite recent advancements, accurate MRG remains challenging due to the need for precise clinical understanding and the identification of clinical findings. Moreover, the imbalanced distribution of diseases makes the challenge even more pronounced, as rare diseases are underrepresented in training data, making their diagnostic performance unreliable. To address these challenges, we propose diagnosis-driven prompts for medical report generation (PromptMRG), a novel framework that aims to improve the diagnostic accuracy of MRG with the guidance of diagnosis-aware prompts. Specifically, PromptMRG is based on encoder-decoder architecture with an extra disease classification branch. When generating reports, the diagnostic results from the classification branch are converted into token prompts to explicitly guide the generation process. To further improve the diagnostic accuracy, we design cross-modal feature enhancement, which retrieves similar reports from the database to assist the diagnosis of a query image by leveraging the knowledge from a pre-trained CLIP. Moreover, the disease imbalanced issue is addressed by applying an adaptive logit-adjusted loss to the classification branch based on the individual learning status of each disease, which overcomes the barrier of text decoder's inability to manipulate disease distributions. Experiments on two MRG benchmarks show the effectiveness of the proposed method, where it obtains state-of-the-art clinical efficacy performance on both datasets.
Stratified Adversarial Robustness with Rejection
Recently, there is an emerging interest in adversarially training a classifier with a rejection option (also known as a selective classifier) for boosting adversarial robustness. While rejection can incur a cost in many applications, existing studies typically associate zero cost with rejecting perturbed inputs, which can result in the rejection of numerous slightly-perturbed inputs that could be correctly classified. In this work, we study adversarially-robust classification with rejection in the stratified rejection setting, where the rejection cost is modeled by rejection loss functions monotonically non-increasing in the perturbation magnitude. We theoretically analyze the stratified rejection setting and propose a novel defense method -- Adversarial Training with Consistent Prediction-based Rejection (CPR) -- for building a robust selective classifier. Experiments on image datasets demonstrate that the proposed method significantly outperforms existing methods under strong adaptive attacks. For instance, on CIFAR-10, CPR reduces the total robust loss (for different rejection losses) by at least 7.3% under both seen and unseen attacks.
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks
We introduce a simple yet effective distillation framework that is able to boost the vanilla ResNet-50 to 80%+ Top-1 accuracy on ImageNet without tricks. We construct such a framework through analyzing the problems in the existing classification system and simplify the base method ensemble knowledge distillation via discriminators by: (1) adopting the similarity loss and discriminator only on the final outputs and (2) using the average of softmax probabilities from all teacher ensembles as the stronger supervision. Intriguingly, three novel perspectives are presented for distillation: (1) weight decay can be weakened or even completely removed since the soft label also has a regularization effect; (2) using a good initialization for students is critical; and (3) one-hot/hard label is not necessary in the distillation process if the weights are well initialized. We show that such a straight-forward framework can achieve state-of-the-art results without involving any commonly-used techniques, such as architecture modification; outside training data beyond ImageNet; autoaug/randaug; cosine learning rate; mixup/cutmix training; label smoothing; etc. Our method obtains 80.67% top-1 accuracy on ImageNet using a single crop-size of 224x224 with vanilla ResNet-50, outperforming the previous state-of-the-arts by a significant margin under the same network structure. Our result can be regarded as a strong baseline using knowledge distillation, and to our best knowledge, this is also the first method that is able to boost vanilla ResNet-50 to surpass 80% on ImageNet without architecture modification or additional training data. On smaller ResNet-18, our distillation framework consistently improves from 69.76% to 73.19%, which shows tremendous practical values in real-world applications. Our code and models are available at: https://github.com/szq0214/MEAL-V2.
Fine-Grained Head Pose Estimation Without Keypoints
Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
"Glitch in the Matrix!": A Large Scale Benchmark for Content Driven Audio-Visual Forgery Detection and Localization
Most deepfake detection methods focus on detecting spatial and/or spatio-temporal changes in facial attributes. This is because available benchmark datasets contain mostly visual-only modifications. However, a sophisticated deepfake may include small segments of audio or audio-visual manipulations that can completely change the meaning of the content. To addresses this gap, we propose and benchmark a new dataset, Localized Audio Visual DeepFake (LAV-DF), consisting of strategic content-driven audio, visual and audio-visual manipulations. The proposed baseline method, Boundary Aware Temporal Forgery Detection (BA-TFD), is a 3D Convolutional Neural Network-based architecture which efficiently captures multimodal manipulations. We further improve (i.e. BA-TFD+) the baseline method by replacing the backbone with a Multiscale Vision Transformer and guide the training process with contrastive, frame classification, boundary matching and multimodal boundary matching loss functions. The quantitative analysis demonstrates the superiority of BA- TFD+ on temporal forgery localization and deepfake detection tasks using several benchmark datasets including our newly proposed dataset. The dataset, models and code are available at https://github.com/ControlNet/LAV-DF.
It's Not a Modality Gap: Characterizing and Addressing the Contrastive Gap
Multi-modal contrastive models such as CLIP achieve state-of-the-art performance in zero-shot classification by embedding input images and texts on a joint representational space. Recently, a modality gap has been reported in two-encoder contrastive models like CLIP, meaning that the image and text embeddings reside in disjoint areas of the latent space. Previous studies suggest that this gap exists due to 1) the cone effect, 2) mismatched pairs in the dataset, and 3) insufficient training. We show that, even when accounting for all these factors, and even when using the same modality, the contrastive loss actually creates a gap during training. As a result, We propose that the modality gap is inherent to the two-encoder contrastive loss and rename it the contrastive gap. We present evidence that attributes this contrastive gap to low uniformity in CLIP space, resulting in embeddings that occupy only a small portion of the latent space. To close the gap, we adapt the uniformity and alignment properties of unimodal contrastive loss to the multi-modal setting and show that simply adding these terms to the CLIP loss distributes the embeddings more uniformly in the representational space, closing the gap. In our experiments, we show that the modified representational space achieves better performance than default CLIP loss in downstream tasks such as zero-shot image classification and multi-modal arithmetic.
Clinically-Inspired Multi-Agent Transformers for Disease Trajectory Forecasting from Multimodal Data
Deep neural networks are often applied to medical images to automate the problem of medical diagnosis. However, a more clinically relevant question that practitioners usually face is how to predict the future trajectory of a disease. Current methods for prognosis or disease trajectory forecasting often require domain knowledge and are complicated to apply. In this paper, we formulate the prognosis prediction problem as a one-to-many prediction problem. Inspired by a clinical decision-making process with two agents -- a radiologist and a general practitioner -- we predict prognosis with two transformer-based components that share information with each other. The first transformer in this framework aims to analyze the imaging data, and the second one leverages its internal states as inputs, also fusing them with auxiliary clinical data. The temporal nature of the problem is modeled within the transformer states, allowing us to treat the forecasting problem as a multi-task classification, for which we propose a novel loss. We show the effectiveness of our approach in predicting the development of structural knee osteoarthritis changes and forecasting Alzheimer's disease clinical status directly from raw multi-modal data. The proposed method outperforms multiple state-of-the-art baselines with respect to performance and calibration, both of which are needed for real-world applications. An open-source implementation of our method is made publicly available at https://github.com/Oulu-IMEDS/CLIMATv2.
CrAM: A Compression-Aware Minimizer
Deep neural networks (DNNs) often have to be compressed, via pruning and/or quantization, before they can be deployed in practical settings. In this work we propose a new compression-aware minimizer dubbed CrAM that modifies the optimization step in a principled way, in order to produce models whose local loss behavior is stable under compression operations such as pruning. Thus, dense models trained via CrAM should be compressible post-training, in a single step, without significant accuracy loss. Experimental results on standard benchmarks, such as residual networks for ImageNet classification and BERT models for language modelling, show that CrAM produces dense models that can be more accurate than the standard SGD/Adam-based baselines, but which are stable under weight pruning: specifically, we can prune models in one-shot to 70-80% sparsity with almost no accuracy loss, and to 90% with reasonable (sim 1%) accuracy loss, which is competitive with gradual compression methods. Additionally, CrAM can produce sparse models which perform well for transfer learning, and it also works for semi-structured 2:4 pruning patterns supported by GPU hardware. The code for reproducing the results is available at https://github.com/IST-DASLab/CrAM .
Meta-ZSDETR: Zero-shot DETR with Meta-learning
Zero-shot object detection aims to localize and recognize objects of unseen classes. Most of existing works face two problems: the low recall of RPN in unseen classes and the confusion of unseen classes with background. In this paper, we present the first method that combines DETR and meta-learning to perform zero-shot object detection, named Meta-ZSDETR, where model training is formalized as an individual episode based meta-learning task. Different from Faster R-CNN based methods that firstly generate class-agnostic proposals, and then classify them with visual-semantic alignment module, Meta-ZSDETR directly predict class-specific boxes with class-specific queries and further filter them with the predicted accuracy from classification head. The model is optimized with meta-contrastive learning, which contains a regression head to generate the coordinates of class-specific boxes, a classification head to predict the accuracy of generated boxes, and a contrastive head that utilizes the proposed contrastive-reconstruction loss to further separate different classes in visual space. We conduct extensive experiments on two benchmark datasets MS COCO and PASCAL VOC. Experimental results show that our method outperforms the existing ZSD methods by a large margin.
Rethinking Data Distillation: Do Not Overlook Calibration
Neural networks trained on distilled data often produce over-confident output and require correction by calibration methods. Existing calibration methods such as temperature scaling and mixup work well for networks trained on original large-scale data. However, we find that these methods fail to calibrate networks trained on data distilled from large source datasets. In this paper, we show that distilled data lead to networks that are not calibratable due to (i) a more concentrated distribution of the maximum logits and (ii) the loss of information that is semantically meaningful but unrelated to classification tasks. To address this problem, we propose Masked Temperature Scaling (MTS) and Masked Distillation Training (MDT) which mitigate the limitations of distilled data and achieve better calibration results while maintaining the efficiency of dataset distillation.
FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems
This paper presents the FlowTransformer framework, a novel approach for implementing transformer-based Network Intrusion Detection Systems (NIDSs). FlowTransformer leverages the strengths of transformer models in identifying the long-term behaviour and characteristics of networks, which are often overlooked by most existing NIDSs. By capturing these complex patterns in network traffic, FlowTransformer offers a flexible and efficient tool for researchers and practitioners in the cybersecurity community who are seeking to implement NIDSs using transformer-based models. FlowTransformer allows the direct substitution of various transformer components, including the input encoding, transformer, classification head, and the evaluation of these across any flow-based network dataset. To demonstrate the effectiveness and efficiency of the FlowTransformer framework, we utilise it to provide an extensive evaluation of various common transformer architectures, such as GPT 2.0 and BERT, on three commonly used public NIDS benchmark datasets. We provide results for accuracy, model size and speed. A key finding of our evaluation is that the choice of classification head has the most significant impact on the model performance. Surprisingly, Global Average Pooling, which is commonly used in text classification, performs very poorly in the context of NIDS. In addition, we show that model size can be reduced by over 50\%, and inference and training times improved, with no loss of accuracy, by making specific choices of input encoding and classification head instead of other commonly used alternatives.
Understanding Self-Distillation in the Presence of Label Noise
Self-distillation (SD) is the process of first training a teacher model and then using its predictions to train a student model with the same architecture. Specifically, the student's objective function is big(xi*ell(teacher's predictions, student's predictions) + (1-xi)*ell(given labels, student's predictions)big), where ell is some loss function and xi is some parameter in [0,1]. Empirically, SD has been observed to provide performance gains in several settings. In this paper, we theoretically characterize the effect of SD in two supervised learning problems with noisy labels. We first analyze SD for regularized linear regression and show that in the high label noise regime, the optimal value of xi that minimizes the expected error in estimating the ground truth parameter is surprisingly greater than 1. Empirically, we show that xi > 1 works better than xi leq 1 even with the cross-entropy loss for several classification datasets when 50\% or 30\% of the labels are corrupted. Further, we quantify when optimal SD is better than optimal regularization. Next, we analyze SD in the case of logistic regression for binary classification with random label corruption and quantify the range of label corruption in which the student outperforms the teacher in terms of accuracy. To our knowledge, this is the first result of its kind for the cross-entropy loss.
ScatSimCLR: self-supervised contrastive learning with pretext task regularization for small-scale datasets
In this paper, we consider a problem of self-supervised learning for small-scale datasets based on contrastive loss between multiple views of the data, which demonstrates the state-of-the-art performance in classification task. Despite the reported results, such factors as the complexity of training requiring complex architectures, the needed number of views produced by data augmentation, and their impact on the classification accuracy are understudied problems. To establish the role of these factors, we consider an architecture of contrastive loss system such as SimCLR, where baseline model is replaced by geometrically invariant "hand-crafted" network ScatNet with small trainable adapter network and argue that the number of parameters of the whole system and the number of views can be considerably reduced while practically preserving the same classification accuracy. In addition, we investigate the impact of regularization strategies using pretext task learning based on an estimation of parameters of augmentation transform such as rotation and jigsaw permutation for both traditional baseline models and ScatNet based models. Finally, we demonstrate that the proposed architecture with pretext task learning regularization achieves the state-of-the-art classification performance with a smaller number of trainable parameters and with reduced number of views.
UDALM: Unsupervised Domain Adaptation through Language Modeling
In this work we explore Unsupervised Domain Adaptation (UDA) of pretrained language models for downstream tasks. We introduce UDALM, a fine-tuning procedure, using a mixed classification and Masked Language Model loss, that can adapt to the target domain distribution in a robust and sample efficient manner. Our experiments show that performance of models trained with the mixed loss scales with the amount of available target data and the mixed loss can be effectively used as a stopping criterion during UDA training. Furthermore, we discuss the relationship between A-distance and the target error and explore some limitations of the Domain Adversarial Training approach. Our method is evaluated on twelve domain pairs of the Amazon Reviews Sentiment dataset, yielding 91.74% accuracy, which is an 1.11% absolute improvement over the state-of-the-art.
Is Heuristic Sampling Necessary in Training Deep Object Detectors?
To train accurate deep object detectors under the extreme foreground-background imbalance, heuristic sampling methods are always necessary, which either re-sample a subset of all training samples (hard sampling methods, \eg biased sampling, OHEM), or use all training samples but re-weight them discriminatively (soft sampling methods, \eg Focal Loss, GHM). In this paper, we challenge the necessity of such hard/soft sampling methods for training accurate deep object detectors. While previous studies have shown that training detectors without heuristic sampling methods would significantly degrade accuracy, we reveal that this degradation comes from an unreasonable classification gradient magnitude caused by the imbalance, rather than a lack of re-sampling/re-weighting. Motivated by our discovery, we propose a simple yet effective Sampling-Free mechanism to achieve a reasonable classification gradient magnitude by initialization and loss scaling. Unlike heuristic sampling methods with multiple hyperparameters, our Sampling-Free mechanism is fully data diagnostic, without laborious hyperparameters searching. We verify the effectiveness of our method in training anchor-based and anchor-free object detectors, where our method always achieves higher detection accuracy than heuristic sampling methods on COCO and PASCAL VOC datasets. Our Sampling-Free mechanism provides a new perspective to address the foreground-background imbalance. Our code is released at https://github.com/ChenJoya/sampling-free.
Dual-Head Knowledge Distillation: Enhancing Logits Utilization with an Auxiliary Head
Traditional knowledge distillation focuses on aligning the student's predicted probabilities with both ground-truth labels and the teacher's predicted probabilities. However, the transition to predicted probabilities from logits would obscure certain indispensable information. To address this issue, it is intuitive to additionally introduce a logit-level loss function as a supplement to the widely used probability-level loss function, for exploiting the latent information of logits. Unfortunately, we empirically find that the amalgamation of the newly introduced logit-level loss and the previous probability-level loss will lead to performance degeneration, even trailing behind the performance of employing either loss in isolation. We attribute this phenomenon to the collapse of the classification head, which is verified by our theoretical analysis based on the neural collapse theory. Specifically, the gradients of the two loss functions exhibit contradictions in the linear classifier yet display no such conflict within the backbone. Drawing from the theoretical analysis, we propose a novel method called dual-head knowledge distillation, which partitions the linear classifier into two classification heads responsible for different losses, thereby preserving the beneficial effects of both losses on the backbone while eliminating adverse influences on the classification head. Extensive experiments validate that our method can effectively exploit the information inside the logits and achieve superior performance against state-of-the-art counterparts.
Efficient On-device Training via Gradient Filtering
Despite its importance for federated learning, continuous learning and many other applications, on-device training remains an open problem for EdgeAI. The problem stems from the large number of operations (e.g., floating point multiplications and additions) and memory consumption required during training by the back-propagation algorithm. Consequently, in this paper, we propose a new gradient filtering approach which enables on-device CNN model training. More precisely, our approach creates a special structure with fewer unique elements in the gradient map, thus significantly reducing the computational complexity and memory consumption of back propagation during training. Extensive experiments on image classification and semantic segmentation with multiple CNN models (e.g., MobileNet, DeepLabV3, UPerNet) and devices (e.g., Raspberry Pi and Jetson Nano) demonstrate the effectiveness and wide applicability of our approach. For example, compared to SOTA, we achieve up to 19times speedup and 77.1% memory savings on ImageNet classification with only 0.1% accuracy loss. Finally, our method is easy to implement and deploy; over 20times speedup and 90% energy savings have been observed compared to highly optimized baselines in MKLDNN and CUDNN on NVIDIA Jetson Nano. Consequently, our approach opens up a new direction of research with a huge potential for on-device training.
Edge Representation Learning with Hypergraphs
Graph neural networks have recently achieved remarkable success in representing graph-structured data, with rapid progress in both the node embedding and graph pooling methods. Yet, they mostly focus on capturing information from the nodes considering their connectivity, and not much work has been done in representing the edges, which are essential components of a graph. However, for tasks such as graph reconstruction and generation, as well as graph classification tasks for which the edges are important for discrimination, accurately representing edges of a given graph is crucial to the success of the graph representation learning. To this end, we propose a novel edge representation learning framework based on Dual Hypergraph Transformation (DHT), which transforms the edges of a graph into the nodes of a hypergraph. This dual hypergraph construction allows us to apply message-passing techniques for node representations to edges. After obtaining edge representations from the hypergraphs, we then cluster or drop edges to obtain holistic graph-level edge representations. We validate our edge representation learning method with hypergraphs on diverse graph datasets for graph representation and generation performance, on which our method largely outperforms existing graph representation learning methods. Moreover, our edge representation learning and pooling method also largely outperforms state-of-the-art graph pooling methods on graph classification, not only because of its accurate edge representation learning, but also due to its lossless compression of the nodes and removal of irrelevant edges for effective message-passing.
CountCLIP -- [Re] Teaching CLIP to Count to Ten
Large vision-language models (VLMs) are shown to learn rich joint image-text representations enabling high performances in relevant downstream tasks. However, they fail to showcase their quantitative understanding of objects, and they lack good counting-aware representation. This paper conducts a reproducibility study of 'Teaching CLIP to Count to Ten' (Paiss et al., 2023), which presents a method to finetune a CLIP model (Radford et al., 2021) to improve zero-shot counting accuracy in an image while maintaining the performance for zero-shot classification by introducing a counting-contrastive loss term. We improve the model's performance on a smaller subset of their training data with lower computational resources. We verify these claims by reproducing their study with our own code. The implementation can be found at https://github.com/SforAiDl/CountCLIP.
GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector
In this paper, we present a novel end-to-end group collaborative learning network, termed GCoNet+, which can effectively and efficiently (250 fps) identify co-salient objects in natural scenes. The proposed GCoNet+ achieves the new state-of-the-art performance for co-salient object detection (CoSOD) through mining consensus representations based on the following two essential criteria: 1) intra-group compactness to better formulate the consistency among co-salient objects by capturing their inherent shared attributes using our novel group affinity module (GAM); 2) inter-group separability to effectively suppress the influence of noisy objects on the output by introducing our new group collaborating module (GCM) conditioning on the inconsistent consensus. To further improve the accuracy, we design a series of simple yet effective components as follows: i) a recurrent auxiliary classification module (RACM) promoting model learning at the semantic level; ii) a confidence enhancement module (CEM) assisting the model in improving the quality of the final predictions; and iii) a group-based symmetric triplet (GST) loss guiding the model to learn more discriminative features. Extensive experiments on three challenging benchmarks, i.e., CoCA, CoSOD3k, and CoSal2015, demonstrate that our GCoNet+ outperforms the existing 12 cutting-edge models. Code has been released at https://github.com/ZhengPeng7/GCoNet_plus.
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT
Self-supervised speech representation learning has shown promising results in various speech processing tasks. However, the pre-trained models, e.g., HuBERT, are storage-intensive Transformers, limiting their scope of applications under low-resource settings. To this end, we propose LightHuBERT, a once-for-all Transformer compression framework, to find the desired architectures automatically by pruning structured parameters. More precisely, we create a Transformer-based supernet that is nested with thousands of weight-sharing subnets and design a two-stage distillation strategy to leverage the contextualized latent representations from HuBERT. Experiments on automatic speech recognition (ASR) and the SUPERB benchmark show the proposed LightHuBERT enables over 10^9 architectures concerning the embedding dimension, attention dimension, head number, feed-forward network ratio, and network depth. LightHuBERT outperforms the original HuBERT on ASR and five SUPERB tasks with the HuBERT size, achieves comparable performance to the teacher model in most tasks with a reduction of 29% parameters, and obtains a 3.5times compression ratio in three SUPERB tasks, e.g., automatic speaker verification, keyword spotting, and intent classification, with a slight accuracy loss. The code and pre-trained models are available at https://github.com/mechanicalsea/lighthubert.
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models
While language models have exceptional capabilities at text generation, they lack a natural inductive bias for emitting numbers and thus struggle in tasks involving reasoning over quantities, especially arithmetics. This has particular relevance in scientific datasets where combinations of text and numerical data are abundant. One fundamental limitation is the nature of the CE loss, which assumes a nominal (categorical) scale and thus cannot convey proximity between generated number tokens. As a remedy, we here present two versions of a number token loss. The first is based on an L_p loss between the ground truth token value and the weighted sum of the predicted class probabilities. The second loss minimizes the Wasserstein-1 distance between the distribution of the predicted output probabilities and the ground truth distribution. These regression-like losses can easily be added to any language model and extend the CE objective during training. We compare the proposed schemes on a mathematics dataset against existing tokenization, encoding, and decoding schemes for improving number representation in language models. Our results reveal a significant improvement in numerical accuracy when equipping a standard T5 model with the proposed loss schemes.
Revisiting Discriminative vs. Generative Classifiers: Theory and Implications
A large-scale deep model pre-trained on massive labeled or unlabeled data transfers well to downstream tasks. Linear evaluation freezes parameters in the pre-trained model and trains a linear classifier separately, which is efficient and attractive for transfer. However, little work has investigated the classifier in linear evaluation except for the default logistic regression. Inspired by the statistical efficiency of naive Bayes, the paper revisits the classical topic on discriminative vs. generative classifiers. Theoretically, the paper considers the surrogate loss instead of the zero-one loss in analyses and generalizes the classical results from binary cases to multiclass ones. We show that, under mild assumptions, multiclass naive Bayes requires O(log n) samples to approach its asymptotic error while the corresponding multiclass logistic regression requires O(n) samples, where n is the feature dimension. To establish it, we present a multiclass H-consistency bound framework and an explicit bound for logistic loss, which are of independent interests. Simulation results on a mixture of Gaussian validate our theoretical findings. Experiments on various pre-trained deep vision models show that naive Bayes consistently converges faster as the number of data increases. Besides, naive Bayes shows promise in few-shot cases and we observe the "two regimes" phenomenon in pre-trained supervised models. Our code is available at https://github.com/ML-GSAI/Revisiting-Dis-vs-Gen-Classifiers.
Inducing Neural Collapse in Deep Long-tailed Learning
Although deep neural networks achieve tremendous success on various classification tasks, the generalization ability drops sheer when training datasets exhibit long-tailed distributions. One of the reasons is that the learned representations (i.e. features) from the imbalanced datasets are less effective than those from balanced datasets. Specifically, the learned representation under class-balanced distribution will present the Neural Collapse (NC) phenomena. NC indicates the features from the same category are close to each other and from different categories are maximally distant, showing an optimal linear separable state of classification. However, the pattern differs on imbalanced datasets and is partially responsible for the reduced performance of the model. In this work, we propose two explicit feature regularization terms to learn high-quality representation for class-imbalanced data. With the proposed regularization, NC phenomena will appear under the class-imbalanced distribution, and the generalization ability can be significantly improved. Our method is easily implemented, highly effective, and can be plugged into most existing methods. The extensive experimental results on widely-used benchmarks show the effectiveness of our method
Harmonic Loss Trains Interpretable AI Models
In this paper, we introduce **harmonic loss** as an alternative to the standard cross-entropy loss for training neural networks and large language models (LLMs). Harmonic loss enables improved interpretability and faster convergence, owing to its scale invariance and finite convergence point by design, which can be interpreted as a class center. We first validate the performance of harmonic models across algorithmic, vision, and language datasets. Through extensive experiments, we demonstrate that models trained with harmonic loss outperform standard models by: (a) enhancing interpretability, (b) requiring less data for generalization, and (c) reducing grokking. Moreover, we compare a GPT-2 model trained with harmonic loss to the standard GPT-2, illustrating that the harmonic model develops more interpretable representations. Looking forward, we believe harmonic loss has the potential to become a valuable tool in domains with limited data availability or in high-stakes applications where interpretability and reliability are paramount, paving the way for more robust and efficient neural network models.
AdaFace: Quality Adaptive Margin for Face Recognition
Recognition in low quality face datasets is challenging because facial attributes are obscured and degraded. Advances in margin-based loss functions have resulted in enhanced discriminability of faces in the embedding space. Further, previous studies have studied the effect of adaptive losses to assign more importance to misclassified (hard) examples. In this work, we introduce another aspect of adaptiveness in the loss function, namely the image quality. We argue that the strategy to emphasize misclassified samples should be adjusted according to their image quality. Specifically, the relative importance of easy or hard samples should be based on the sample's image quality. We propose a new loss function that emphasizes samples of different difficulties based on their image quality. Our method achieves this in the form of an adaptive margin function by approximating the image quality with feature norms. Extensive experiments show that our method, AdaFace, improves the face recognition performance over the state-of-the-art (SoTA) on four datasets (IJB-B, IJB-C, IJB-S and TinyFace). Code and models are released in https://github.com/mk-minchul/AdaFace.
LegendreTron: Uprising Proper Multiclass Loss Learning
Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes.
When Noisy Labels Meet Long Tail Dilemmas: A Representation Calibration Method
Real-world large-scale datasets are both noisily labeled and class-imbalanced. The issues seriously hurt the generalization of trained models. It is hence significant to address the simultaneous incorrect labeling and class-imbalance, i.e., the problem of learning with noisy labels on long-tailed data. Previous works develop several methods for the problem. However, they always rely on strong assumptions that are invalid or hard to be checked in practice. In this paper, to handle the problem and address the limitations of prior works, we propose a representation calibration method RCAL. Specifically, RCAL works with the representations extracted by unsupervised contrastive learning. We assume that without incorrect labeling and class imbalance, the representations of instances in each class conform to a multivariate Gaussian distribution, which is much milder and easier to be checked. Based on the assumption, we recover underlying representation distributions from polluted ones resulting from mislabeled and class-imbalanced data. Additional data points are then sampled from the recovered distributions to help generalization. Moreover, during classifier training, representation learning takes advantage of representation robustness brought by contrastive learning, which further improves the classifier performance. We derive theoretical results to discuss the effectiveness of our representation calibration. Experiments on multiple benchmarks justify our claims and confirm the superiority of the proposed method.
Visualizing the Loss Landscape of Neural Nets
Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and well-chosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.
Learning to Reject with a Fixed Predictor: Application to Decontextualization
We study the problem of classification with a reject option for a fixed predictor, applicable in natural language processing. We introduce a new problem formulation for this scenario, and an algorithm minimizing a new surrogate loss function. We provide a complete theoretical analysis of the surrogate loss function with a strong H-consistency guarantee. For evaluation, we choose the decontextualization task, and provide a manually-labelled dataset of 2mathord,000 examples. Our algorithm significantly outperforms the baselines considered, with a sim!!25% improvement in coverage when halving the error rate, which is only sim!! 3 % away from the theoretical limit.
Loss-to-Loss Prediction: Scaling Laws for All Datasets
While scaling laws provide a reliable methodology for predicting train loss across compute scales for a single data distribution, less is known about how these predictions should change as we change the distribution. In this paper, we derive a strategy for predicting one loss from another and apply it to predict across different pre-training datasets and from pre-training data to downstream task data. Our predictions extrapolate well even at 20x the largest FLOP budget used to fit the curves. More precisely, we find that there are simple shifted power law relationships between (1) the train losses of two models trained on two separate datasets when the models are paired by training compute (train-to-train), (2) the train loss and the test loss on any downstream distribution for a single model (train-to-test), and (3) the test losses of two models trained on two separate train datasets (test-to-test). The results hold up for pre-training datasets that differ substantially (some are entirely code and others have no code at all) and across a variety of downstream tasks. Finally, we find that in some settings these shifted power law relationships can yield more accurate predictions than extrapolating single-dataset scaling laws.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Improving Knowledge Distillation via Regularizing Feature Norm and Direction
Knowledge distillation (KD) exploits a large well-trained model (i.e., teacher) to train a small student model on the same dataset for the same task. Treating teacher features as knowledge, prevailing methods of knowledge distillation train student by aligning its features with the teacher's, e.g., by minimizing the KL-divergence between their logits or L2 distance between their intermediate features. While it is natural to believe that better alignment of student features to the teacher better distills teacher knowledge, simply forcing this alignment does not directly contribute to the student's performance, e.g., classification accuracy. In this work, we propose to align student features with class-mean of teacher features, where class-mean naturally serves as a strong classifier. To this end, we explore baseline techniques such as adopting the cosine distance based loss to encourage the similarity between student features and their corresponding class-means of the teacher. Moreover, we train the student to produce large-norm features, inspired by other lines of work (e.g., model pruning and domain adaptation), which find the large-norm features to be more significant. Finally, we propose a rather simple loss term (dubbed ND loss) to simultaneously (1) encourage student to produce large-norm features, and (2) align the direction of student features and teacher class-means. Experiments on standard benchmarks demonstrate that our explored techniques help existing KD methods achieve better performance, i.e., higher classification accuracy on ImageNet and CIFAR100 datasets, and higher detection precision on COCO dataset. Importantly, our proposed ND loss helps the most, leading to the state-of-the-art performance on these benchmarks. The source code is available at https://github.com/WangYZ1608/Knowledge-Distillation-via-ND.
On the Role of Neural Collapse in Transfer Learning
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting.
Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on Language Models
Adam has been shown to outperform gradient descent on large language models by a larger margin than on other tasks, but it is unclear why. We show that a key factor in this performance gap is the heavy-tailed class imbalance found in language tasks. When trained with gradient descent, the loss of infrequent words decreases more slowly than the loss of frequent ones. This leads to a slow decrease on the average loss as most samples come from infrequent words. On the other hand, Adam and sign-based methods are less sensitive to this problem. To establish that this behavior is caused by class imbalance, we show empirically that it can be reproduced across architectures and data types, on language transformers, vision CNNs, and linear models. On a linear model with cross-entropy loss, we show that class imbalance leads to imbalanced, correlated gradients and Hessians that have been hypothesized to benefit Adam. We also prove that, in continuous time, gradient descent converges slowly on low-frequency classes while sign descent does not.
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
Towards Understanding Generalization of Macro-AUC in Multi-label Learning
Macro-AUC is the arithmetic mean of the class-wise AUCs in multi-label learning and is commonly used in practice. However, its theoretical understanding is far lacking. Toward solving it, we characterize the generalization properties of various learning algorithms based on the corresponding surrogate losses w.r.t. Macro-AUC. We theoretically identify a critical factor of the dataset affecting the generalization bounds: the label-wise class imbalance. Our results on the imbalance-aware error bounds show that the widely-used univariate loss-based algorithm is more sensitive to the label-wise class imbalance than the proposed pairwise and reweighted loss-based ones, which probably implies its worse performance. Moreover, empirical results on various datasets corroborate our theory findings. To establish it, technically, we propose a new (and more general) McDiarmid-type concentration inequality, which may be of independent interest.
Symmetric Neural-Collapse Representations with Supervised Contrastive Loss: The Impact of ReLU and Batching
Supervised contrastive loss (SCL) is a competitive and often superior alternative to the cross-entropy loss for classification. While prior studies have demonstrated that both losses yield symmetric training representations under balanced data, this symmetry breaks under class imbalances. This paper presents an intriguing discovery: the introduction of a ReLU activation at the final layer effectively restores the symmetry in SCL-learned representations. We arrive at this finding analytically, by establishing that the global minimizers of an unconstrained features model with SCL loss and entry-wise non-negativity constraints form an orthogonal frame. Extensive experiments conducted across various datasets, architectures, and imbalance scenarios corroborate our finding. Importantly, our experiments reveal that the inclusion of the ReLU activation restores symmetry without compromising test accuracy. This constitutes the first geometry characterization of SCL under imbalances. Additionally, our analysis and experiments underscore the pivotal role of batch selection strategies in representation geometry. By proving necessary and sufficient conditions for mini-batch choices that ensure invariant symmetric representations, we introduce batch-binding as an efficient strategy that guarantees these conditions hold.
Towards Exact Computation of Inductive Bias
Much research in machine learning involves finding appropriate inductive biases (e.g. convolutional neural networks, momentum-based optimizers, transformers) to promote generalization on tasks. However, quantification of the amount of inductive bias associated with these architectures and hyperparameters has been limited. We propose a novel method for efficiently computing the inductive bias required for generalization on a task with a fixed training data budget; formally, this corresponds to the amount of information required to specify well-generalizing models within a specific hypothesis space of models. Our approach involves modeling the loss distribution of random hypotheses drawn from a hypothesis space to estimate the required inductive bias for a task relative to these hypotheses. Unlike prior work, our method provides a direct estimate of inductive bias without using bounds and is applicable to diverse hypothesis spaces. Moreover, we derive approximation error bounds for our estimation approach in terms of the number of sampled hypotheses. Consistent with prior results, our empirical results demonstrate that higher dimensional tasks require greater inductive bias. We show that relative to other expressive model classes, neural networks as a model class encode large amounts of inductive bias. Furthermore, our measure quantifies the relative difference in inductive bias between different neural network architectures. Our proposed inductive bias metric provides an information-theoretic interpretation of the benefits of specific model architectures for certain tasks and provides a quantitative guide to developing tasks requiring greater inductive bias, thereby encouraging the development of more powerful inductive biases.
Optimizing Calibration by Gaining Aware of Prediction Correctness
Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.
Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models
Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.
Class Machine Unlearning for Complex Data via Concepts Inference and Data Poisoning
In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.
Multitask learning in Audio Captioning: a sentence embedding regression loss acts as a regularizer
In this work, we propose to study the performance of a model trained with a sentence embedding regression loss component for the Automated Audio Captioning task. This task aims to build systems that can describe audio content with a single sentence written in natural language. Most systems are trained with the standard Cross-Entropy loss, which does not take into account the semantic closeness of the sentence. We found that adding a sentence embedding loss term reduces overfitting, but also increased SPIDEr from 0.397 to 0.418 in our first setting on the AudioCaps corpus. When we increased the weight decay value, we found our model to be much closer to the current state-of-the-art methods, with a SPIDEr score up to 0.444 compared to a 0.475 score. Moreover, this model uses eight times less trainable parameters. In this training setting, the sentence embedding loss has no more impact on the model performance.
Spike No More: Stabilizing the Pre-training of Large Language Models
Loss spikes often occur during pre-training of large language models. The spikes degrade the performance of large language models and sometimes ruin the pre-training. Since the pre-training needs a vast computational budget, we should avoid such spikes. To investigate the cause of loss spikes, we focus on gradients of internal layers. Through theoretical analyses, we reveal two causes of the exploding gradients, and provide requirements to prevent the explosion. In addition, we propose a method to satisfy the requirements by combining the initialization method and a simple modification to embeddings. We conduct various experiments to verify our theoretical analyses empirically. Experimental results indicate that the combination is effective in preventing spikes during pre-training.
Large Scale Incremental Learning
Modern machine learning suffers from catastrophic forgetting when learning new classes incrementally. The performance dramatically degrades due to the missing data of old classes. Incremental learning methods have been proposed to retain the knowledge acquired from the old classes, by using knowledge distilling and keeping a few exemplars from the old classes. However, these methods struggle to scale up to a large number of classes. We believe this is because of the combination of two factors: (a) the data imbalance between the old and new classes, and (b) the increasing number of visually similar classes. Distinguishing between an increasing number of visually similar classes is particularly challenging, when the training data is unbalanced. We propose a simple and effective method to address this data imbalance issue. We found that the last fully connected layer has a strong bias towards the new classes, and this bias can be corrected by a linear model. With two bias parameters, our method performs remarkably well on two large datasets: ImageNet (1000 classes) and MS-Celeb-1M (10000 classes), outperforming the state-of-the-art algorithms by 11.1% and 13.2% respectively.
Data-Efficient Learning via Clustering-Based Sensitivity Sampling: Foundation Models and Beyond
We study the data selection problem, whose aim is to select a small representative subset of data that can be used to efficiently train a machine learning model. We present a new data selection approach based on k-means clustering and sensitivity sampling. Assuming access to an embedding representation of the data with respect to which the model loss is H\"older continuous, our approach provably allows selecting a set of ``typical'' k + 1/varepsilon^2 elements whose average loss corresponds to the average loss of the whole dataset, up to a multiplicative (1pmvarepsilon) factor and an additive varepsilon lambda Phi_k, where Phi_k represents the k-means cost for the input embeddings and lambda is the H\"older constant. We furthermore demonstrate the performance and scalability of our approach on fine-tuning foundation models and show that it outperforms state-of-the-art methods. We also show how it can be applied on linear regression, leading to a new sampling strategy that surprisingly matches the performances of leverage score sampling, while being conceptually simpler and more scalable.
Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data
Most positive and unlabeled data is subject to selection biases. The labeled examples can, for example, be selected from the positive set because they are easier to obtain or more obviously positive. This paper investigates how learning can be ena BHbled in this setting. We propose and theoretically analyze an empirical-risk-based method for incorporating the labeling mechanism. Additionally, we investigate under which assumptions learning is possible when the labeling mechanism is not fully understood and propose a practical method to enable this. Our empirical analysis supports the theoretical results and shows that taking into account the possibility of a selection bias, even when the labeling mechanism is unknown, improves the trained classifiers.
Understanding the Behaviour of Contrastive Loss
Unsupervised contrastive learning has achieved outstanding success, while the mechanism of contrastive loss has been less studied. In this paper, we concentrate on the understanding of the behaviours of unsupervised contrastive loss. We will show that the contrastive loss is a hardness-aware loss function, and the temperature {\tau} controls the strength of penalties on hard negative samples. The previous study has shown that uniformity is a key property of contrastive learning. We build relations between the uniformity and the temperature {\tau} . We will show that uniformity helps the contrastive learning to learn separable features, however excessive pursuit to the uniformity makes the contrastive loss not tolerant to semantically similar samples, which may break the underlying semantic structure and be harmful to the formation of features useful for downstream tasks. This is caused by the inherent defect of the instance discrimination objective. Specifically, instance discrimination objective tries to push all different instances apart, ignoring the underlying relations between samples. Pushing semantically consistent samples apart has no positive effect for acquiring a prior informative to general downstream tasks. A well-designed contrastive loss should have some extents of tolerance to the closeness of semantically similar samples. Therefore, we find that the contrastive loss meets a uniformity-tolerance dilemma, and a good choice of temperature can compromise these two properties properly to both learn separable features and tolerant to semantically similar samples, improving the feature qualities and the downstream performances.
Fine-tuning with Very Large Dropout
It is impossible today to pretend that the practice of machine learning is compatible with the idea that training and testing data follow the same distribution. Several authors have recently used ensemble techniques to show how scenarios involving multiple data distributions are best served by representations that are both richer than those obtained by regularizing for the best in-distribution performance, and richer than those obtained under the influence of the implicit sparsity bias of common stochastic gradient procedures. This contribution investigates the use of very high dropout rates instead of ensembles to obtain such rich representations. Although training a deep network from scratch using such dropout rates is virtually impossible, fine-tuning a large pre-trained model under such conditions is not only possible but also achieves out-of-distribution performances that exceed those of both ensembles and weight averaging methods such as model soups. This result has practical significance because the importance of the fine-tuning scenario has considerably grown in recent years. This result also provides interesting insights on the nature of rich representations and on the intrinsically linear nature of fine-tuning a large network using a comparatively small dataset.
Geometry-Aware Adaptation for Pretrained Models
Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.
Conan-embedding: General Text Embedding with More and Better Negative Samples
With the growing popularity of RAG, the capabilities of embedding models are gaining increasing attention. Embedding models are primarily trained through contrastive loss learning, with negative examples being a key component. Previous work has proposed various hard negative mining strategies, but these strategies are typically employed as preprocessing steps. In this paper, we propose the conan-embedding model, which maximizes the utilization of more and higher-quality negative examples. Specifically, since the model's ability to handle preprocessed negative examples evolves during training, we propose dynamic hard negative mining method to expose the model to more challenging negative examples throughout the training process. Secondly, contrastive learning requires as many negative examples as possible but is limited by GPU memory constraints. Therefore, we use a Cross-GPU balancing Loss to provide more negative examples for embedding training and balance the batch size across multiple tasks. Moreover, we also discovered that the prompt-response pairs from LLMs can be used for embedding training. Our approach effectively enhances the capabilities of embedding models, currently ranking first on the Chinese leaderboard of Massive text embedding benchmark
For self-supervised learning, Rationality implies generalization, provably
We prove a new upper bound on the generalization gap of classifiers that are obtained by first using self-supervision to learn a representation r of the training data, and then fitting a simple (e.g., linear) classifier g to the labels. Specifically, we show that (under the assumptions described below) the generalization gap of such classifiers tends to zero if C(g) ll n, where C(g) is an appropriately-defined measure of the simple classifier g's complexity, and n is the number of training samples. We stress that our bound is independent of the complexity of the representation r. We do not make any structural or conditional-independence assumptions on the representation-learning task, which can use the same training dataset that is later used for classification. Rather, we assume that the training procedure satisfies certain natural noise-robustness (adding small amount of label noise causes small degradation in performance) and rationality (getting the wrong label is not better than getting no label at all) conditions that widely hold across many standard architectures. We show that our bound is non-vacuous for many popular representation-learning based classifiers on CIFAR-10 and ImageNet, including SimCLR, AMDIM and MoCo.
CHIP: Contrastive Hierarchical Image Pretraining
Few-shot object classification is the task of classifying objects in an image with limited number of examples as supervision. We propose a one-shot/few-shot classification model that can classify an object of any unseen class into a relatively general category in an hierarchically based classification. Our model uses a three-level hierarchical contrastive loss based ResNet152 classifier for classifying an object based on its features extracted from Image embedding, not used during the training phase. For our experimentation, we have used a subset of the ImageNet (ILSVRC-12) dataset that contains only the animal classes for training our model and created our own dataset of unseen classes for evaluating our trained model. Our model provides satisfactory results in classifying the unknown objects into a generic category which has been later discussed in greater detail.
A representation-learning game for classes of prediction tasks
We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.
Robustly Learning a Single Neuron via Sharpness
We study the problem of learning a single neuron with respect to the L_2^2-loss in the presence of adversarial label noise. We give an efficient algorithm that, for a broad family of activations including ReLUs, approximates the optimal L_2^2-error within a constant factor. Our algorithm applies under much milder distributional assumptions compared to prior work. The key ingredient enabling our results is a novel connection to local error bounds from optimization theory.
Identifying Mislabeled Data using the Area Under the Margin Ranking
Not all data in a typical training set help with generalization; some samples can be overly ambiguous or outrightly mislabeled. This paper introduces a new method to identify such samples and mitigate their impact when training neural networks. At the heart of our algorithm is the Area Under the Margin (AUM) statistic, which exploits differences in the training dynamics of clean and mislabeled samples. A simple procedure - adding an extra class populated with purposefully mislabeled threshold samples - learns a AUM upper bound that isolates mislabeled data. This approach consistently improves upon prior work on synthetic and real-world datasets. On the WebVision50 classification task our method removes 17% of training data, yielding a 1.6% (absolute) improvement in test error. On CIFAR100 removing 13% of the data leads to a 1.2% drop in error.
Simpson's Bias in NLP Training
In most machine learning tasks, we evaluate a model M on a given data population S by measuring a population-level metric F(S;M). Examples of such evaluation metric F include precision/recall for (binary) recognition, the F1 score for multi-class classification, and the BLEU metric for language generation. On the other hand, the model M is trained by optimizing a sample-level loss G(S_t;M) at each learning step t, where S_t is a subset of S (a.k.a. the mini-batch). Popular choices of G include cross-entropy loss, the Dice loss, and sentence-level BLEU scores. A fundamental assumption behind this paradigm is that the mean value of the sample-level loss G, if averaged over all possible samples, should effectively represent the population-level metric F of the task, such as, that E[ G(S_t;M) ] approx F(S;M). In this paper, we systematically investigate the above assumption in several NLP tasks. We show, both theoretically and experimentally, that some popular designs of the sample-level loss G may be inconsistent with the true population-level metric F of the task, so that models trained to optimize the former can be substantially sub-optimal to the latter, a phenomenon we call it, Simpson's bias, due to its deep connections with the classic paradox known as Simpson's reversal paradox in statistics and social sciences.
SMOTE: Synthetic Minority Over-sampling Technique
An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of "normal" examples with only a small percentage of "abnormal" or "interesting" examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
We consider the two related problems of detecting if an example is misclassified or out-of-distribution. We present a simple baseline that utilizes probabilities from softmax distributions. Correctly classified examples tend to have greater maximum softmax probabilities than erroneously classified and out-of-distribution examples, allowing for their detection. We assess performance by defining several tasks in computer vision, natural language processing, and automatic speech recognition, showing the effectiveness of this baseline across all. We then show the baseline can sometimes be surpassed, demonstrating the room for future research on these underexplored detection tasks.
Late Stopping: Avoiding Confidently Learning from Mislabeled Examples
Sample selection is a prevalent method in learning with noisy labels, where small-loss data are typically considered as correctly labeled data. However, this method may not effectively identify clean hard examples with large losses, which are critical for achieving the model's close-to-optimal generalization performance. In this paper, we propose a new framework, Late Stopping, which leverages the intrinsic robust learning ability of DNNs through a prolonged training process. Specifically, Late Stopping gradually shrinks the noisy dataset by removing high-probability mislabeled examples while retaining the majority of clean hard examples in the training set throughout the learning process. We empirically observe that mislabeled and clean examples exhibit differences in the number of epochs required for them to be consistently and correctly classified, and thus high-probability mislabeled examples can be removed. Experimental results on benchmark-simulated and real-world noisy datasets demonstrate that the proposed method outperforms state-of-the-art counterparts.
Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data
Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.
Sharpness-Aware Minimization for Efficiently Improving Generalization
In today's heavily overparameterized models, the value of the training loss provides few guarantees on model generalization ability. Indeed, optimizing only the training loss value, as is commonly done, can easily lead to suboptimal model quality. Motivated by prior work connecting the geometry of the loss landscape and generalization, we introduce a novel, effective procedure for instead simultaneously minimizing loss value and loss sharpness. In particular, our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie in neighborhoods having uniformly low loss; this formulation results in a min-max optimization problem on which gradient descent can be performed efficiently. We present empirical results showing that SAM improves model generalization across a variety of benchmark datasets (e.g., CIFAR-10, CIFAR-100, ImageNet, finetuning tasks) and models, yielding novel state-of-the-art performance for several. Additionally, we find that SAM natively provides robustness to label noise on par with that provided by state-of-the-art procedures that specifically target learning with noisy labels. We open source our code at https://github.com/google-research/sam.
Contrast Is All You Need
In this study, we analyze data-scarce classification scenarios, where available labeled legal data is small and imbalanced, potentially hurting the quality of the results. We focused on two finetuning objectives; SetFit (Sentence Transformer Finetuning), a contrastive learning setup, and a vanilla finetuning setup on a legal provision classification task. Additionally, we compare the features that are extracted with LIME (Local Interpretable Model-agnostic Explanations) to see which particular features contributed to the model's classification decisions. The results show that a contrastive setup with SetFit performed better than vanilla finetuning while using a fraction of the training samples. LIME results show that the contrastive learning approach helps boost both positive and negative features which are legally informative and contribute to the classification results. Thus a model finetuned with a contrastive objective seems to base its decisions more confidently on legally informative features.
Evaluating Large Language Models for Anxiety and Depression Classification using Counseling and Psychotherapy Transcripts
We aim to evaluate the efficacy of traditional machine learning and large language models (LLMs) in classifying anxiety and depression from long conversational transcripts. We fine-tune both established transformer models (BERT, RoBERTa, Longformer) and more recent large models (Mistral-7B), trained a Support Vector Machine with feature engineering, and assessed GPT models through prompting. We observe that state-of-the-art models fail to enhance classification outcomes compared to traditional machine learning methods.
A Comprehensive Survey of Regression Based Loss Functions for Time Series Forecasting
Time Series Forecasting has been an active area of research due to its many applications ranging from network usage prediction, resource allocation, anomaly detection, and predictive maintenance. Numerous publications published in the last five years have proposed diverse sets of objective loss functions to address cases such as biased data, long-term forecasting, multicollinear features, etc. In this paper, we have summarized 14 well-known regression loss functions commonly used for time series forecasting and listed out the circumstances where their application can aid in faster and better model convergence. We have also demonstrated how certain categories of loss functions perform well across all data sets and can be considered as a baseline objective function in circumstances where the distribution of the data is unknown. Our code is available at GitHub: https://github.com/aryan-jadon/Regression-Loss-Functions-in-Time-Series-Forecasting-Tensorflow.
Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario
Semi-Supervised Learning (SSL) leverages both labeled and unlabeled data to improve model performance. Traditional SSL methods assume that labeled and unlabeled data share the same label space. However, in real-world applications, especially when the labeled training set is small, there may be classes that are missing from the labeled set. Existing frameworks aim to either reject all unseen classes (open-set SSL) or to discover unseen classes by partitioning an unlabeled set during training (open-world SSL). In our work, we construct a classifier for points from both seen and unseen classes. Our approach is based on extending an existing SSL method, such as FlexMatch, by incorporating an additional entropy loss. This enhancement allows our method to improve the performance of any existing SSL method in the classification of both seen and unseen classes. We demonstrate large improvement gains over state-of-the-art SSL, open-set SSL, and open-world SSL methods, on two benchmark image classification data sets, CIFAR-100 and STL-10. The gains are most pronounced when the labeled data is severely limited (1-25 labeled examples per class).
DeepLearningBrasil@LT-EDI-2023: Exploring Deep Learning Techniques for Detecting Depression in Social Media Text
In this paper, we delineate the strategy employed by our team, DeepLearningBrasil, which secured us the first place in the shared task DepSign-LT-EDI@RANLP-2023, achieving a 47.0% Macro F1-Score and a notable 2.4% advantage. The task was to classify social media texts into three distinct levels of depression - "not depressed," "moderately depressed," and "severely depressed." Leveraging the power of the RoBERTa and DeBERTa models, we further pre-trained them on a collected Reddit dataset, specifically curated from mental health-related Reddit's communities (Subreddits), leading to an enhanced understanding of nuanced mental health discourse. To address lengthy textual data, we used truncation techniques that retained the essence of the content by focusing on its beginnings and endings. Our model was robust against unbalanced data by incorporating sample weights into the loss. Cross-validation and ensemble techniques were then employed to combine our k-fold trained models, delivering an optimal solution. The accompanying code is made available for transparency and further development.
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Domain Generalization via Rationale Invariance
This paper offers a new perspective to ease the challenge of domain generalization, which involves maintaining robust results even in unseen environments. Our design focuses on the decision-making process in the final classifier layer. Specifically, we propose treating the element-wise contributions to the final results as the rationale for making a decision and representing the rationale for each sample as a matrix. For a well-generalized model, we suggest the rationale matrices for samples belonging to the same category should be similar, indicating the model relies on domain-invariant clues to make decisions, thereby ensuring robust results. To implement this idea, we introduce a rationale invariance loss as a simple regularization technique, requiring only a few lines of code. Our experiments demonstrate that the proposed approach achieves competitive results across various datasets, despite its simplicity. Code is available at https://github.com/liangchen527/RIDG.
Class-relation Knowledge Distillation for Novel Class Discovery
We tackle the problem of novel class discovery, which aims to learn novel classes without supervision based on labeled data from known classes. A key challenge lies in transferring the knowledge in the known-class data to the learning of novel classes. Previous methods mainly focus on building a shared representation space for knowledge transfer and often ignore modeling class relations. To address this, we introduce a class relation representation for the novel classes based on the predicted class distribution of a model trained on known classes. Empirically, we find that such class relation becomes less informative during typical discovery training. To prevent such information loss, we propose a novel knowledge distillation framework, which utilizes our class-relation representation to regularize the learning of novel classes. In addition, to enable a flexible knowledge distillation scheme for each data point in novel classes, we develop a learnable weighting function for the regularization, which adaptively promotes knowledge transfer based on the semantic similarity between the novel and known classes. To validate the effectiveness and generalization of our method, we conduct extensive experiments on multiple benchmarks, including CIFAR100, Stanford Cars, CUB, and FGVC-Aircraft datasets. Our results demonstrate that the proposed method outperforms the previous state-of-the-art methods by a significant margin on almost all benchmarks. Code is available at https://github.com/kleinzcy/Cr-KD-NCD{here}.
Sigmoid Loss for Language Image Pre-Training
We propose a simple pairwise sigmoid loss for image-text pre-training. Unlike standard contrastive learning with softmax normalization, the sigmoid loss operates solely on image-text pairs and does not require a global view of the pairwise similarities for normalization. The sigmoid loss simultaneously allows further scaling up the batch size, while also performing better at smaller batch sizes. With only four TPUv4 chips, we can train a Base CLIP model at 4k batch size and a Large LiT model at 20k batch size, the latter achieves 84.5% ImageNet zero-shot accuracy in two days. This disentanglement of the batch size from the loss further allows us to study the impact of examples vs pairs and negative to positive ratio. Finally, we push the batch size to the extreme, up to one million, and find that the benefits of growing batch size quickly diminish, with a more reasonable batch size of 32k being sufficient. We hope our research motivates further explorations in improving the quality and efficiency of language-image pre-training.
Whitening for Self-Supervised Representation Learning
Most of the current self-supervised representation learning (SSL) methods are based on the contrastive loss and the instance-discrimination task, where augmented versions of the same image instance ("positives") are contrasted with instances extracted from other images ("negatives"). For the learning to be effective, many negatives should be compared with a positive pair, which is computationally demanding. In this paper, we propose a different direction and a new loss function for SSL, which is based on the whitening of the latent-space features. The whitening operation has a "scattering" effect on the batch samples, avoiding degenerate solutions where all the sample representations collapse to a single point. Our solution does not require asymmetric networks and it is conceptually simple. Moreover, since negatives are not needed, we can extract multiple positive pairs from the same image instance. The source code of the method and of all the experiments is available at: https://github.com/htdt/self-supervised.
Federated Learning Over Images: Vertical Decompositions and Pre-Trained Backbones Are Difficult to Beat
We carefully evaluate a number of algorithms for learning in a federated environment, and test their utility for a variety of image classification tasks. We consider many issues that have not been adequately considered before: whether learning over data sets that do not have diverse sets of images affects the results; whether to use a pre-trained feature extraction "backbone"; how to evaluate learner performance (we argue that classification accuracy is not enough), among others. Overall, across a wide variety of settings, we find that vertically decomposing a neural network seems to give the best results, and outperforms more standard reconciliation-used methods.
Do ImageNet Classifiers Generalize to ImageNet?
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.
Scaling Laws for Neural Language Models
We study empirical scaling laws for language model performance on the cross-entropy loss. The loss scales as a power-law with model size, dataset size, and the amount of compute used for training, with some trends spanning more than seven orders of magnitude. Other architectural details such as network width or depth have minimal effects within a wide range. Simple equations govern the dependence of overfitting on model/dataset size and the dependence of training speed on model size. These relationships allow us to determine the optimal allocation of a fixed compute budget. Larger models are significantly more sample-efficient, such that optimally compute-efficient training involves training very large models on a relatively modest amount of data and stopping significantly before convergence.
Improving Polyphonic Sound Event Detection on Multichannel Recordings with the Sørensen-Dice Coefficient Loss and Transfer Learning
The S{\o}rensen--Dice Coefficient has recently seen rising popularity as a loss function (also known as Dice loss) due to its robustness in tasks where the number of negative samples significantly exceeds that of positive samples, such as semantic segmentation, natural language processing, and sound event detection. Conventional training of polyphonic sound event detection systems with binary cross-entropy loss often results in suboptimal detection performance as the training is often overwhelmed by updates from negative samples. In this paper, we investigated the effect of the Dice loss, intra- and inter-modal transfer learning, data augmentation, and recording formats, on the performance of polyphonic sound event detection systems with multichannel inputs. Our analysis showed that polyphonic sound event detection systems trained with Dice loss consistently outperformed those trained with cross-entropy loss across different training settings and recording formats in terms of F1 score and error rate. We achieved further performance gains via the use of transfer learning and an appropriate combination of different data augmentation techniques.
Exploring the Potential of Feature Density in Estimating Machine Learning Classifier Performance with Application to Cyberbullying Detection
In this research. we analyze the potential of Feature Density (HD) as a way to comparatively estimate machine learning (ML) classifier performance prior to training. The goal of the study is to aid in solving the problem of resource-intensive training of ML models which is becoming a serious issue due to continuously increasing dataset sizes and the ever rising popularity of Deep Neural Networks (DNN). The issue of constantly increasing demands for more powerful computational resources is also affecting the environment, as training large-scale ML models are causing alarmingly-growing amounts of CO2, emissions. Our approach 1s to optimize the resource-intensive training of ML models for Natural Language Processing to reduce the number of required experiments iterations. We expand on previous attempts on improving classifier training efficiency with FD while also providing an insight to the effectiveness of various linguistically-backed feature preprocessing methods for dialog classification, specifically cyberbullying detection.
Which Features are Learnt by Contrastive Learning? On the Role of Simplicity Bias in Class Collapse and Feature Suppression
Contrastive learning (CL) has emerged as a powerful technique for representation learning, with or without label supervision. However, supervised CL is prone to collapsing representations of subclasses within a class by not capturing all their features, and unsupervised CL may suppress harder class-relevant features by focusing on learning easy class-irrelevant features; both significantly compromise representation quality. Yet, there is no theoretical understanding of class collapse or feature suppression at test time. We provide the first unified theoretically rigorous framework to determine which features are learnt by CL. Our analysis indicate that, perhaps surprisingly, bias of (stochastic) gradient descent towards finding simpler solutions is a key factor in collapsing subclass representations and suppressing harder class-relevant features. Moreover, we present increasing embedding dimensionality and improving the quality of data augmentations as two theoretically motivated solutions to {feature suppression}. We also provide the first theoretical explanation for why employing supervised and unsupervised CL together yields higher-quality representations, even when using commonly-used stochastic gradient methods.
An Amharic News Text classification Dataset
In NLP, text classification is one of the primary problems we try to solve and its uses in language analyses are indisputable. The lack of labeled training data made it harder to do these tasks in low resource languages like Amharic. The task of collecting, labeling, annotating, and making valuable this kind of data will encourage junior researchers, schools, and machine learning practitioners to implement existing classification models in their language. In this short paper, we aim to introduce the Amharic text classification dataset that consists of more than 50k news articles that were categorized into 6 classes. This dataset is made available with easy baseline performances to encourage studies and better performance experiments.
MaxSup: Overcoming Representation Collapse in Label Smoothing
Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining
Pretraining large language models (LLMs) on vast and heterogeneous datasets is crucial for achieving state-of-the-art performance across diverse downstream tasks. However, current training paradigms treat all samples equally, overlooking the importance or relevance of individual samples throughout the training process. Existing reweighting strategies, which primarily focus on group-level data importance, fail to leverage fine-grained instance-level information and do not adapt dynamically to individual sample importance as training progresses. In this paper, we introduce novel algorithms for dynamic, instance-level data reweighting aimed at improving both the efficiency and effectiveness of LLM pretraining. Our methods adjust the weight of each training sample based on its loss value in an online fashion, allowing the model to dynamically focus on more informative or important samples at the current training stage. In particular, our framework allows us to systematically devise reweighting strategies deprioritizing redundant or uninformative data, which we find tend to work best. Furthermore, we develop a new theoretical framework for analyzing the impact of loss-based reweighting on the convergence of gradient-based optimization, providing the first formal characterization of how these strategies affect convergence bounds. We empirically validate our approach across a spectrum of tasks, from pretraining 7B and 1.4B parameter LLMs to smaller-scale language models and linear regression problems, demonstrating that our loss-based reweighting approach can lead to faster convergence and significantly improved performance.
Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks
Representation learning methods have revolutionized machine learning on networks by converting discrete network structures into continuous domains. However, dynamic networks that evolve over time pose new challenges. To address this, dynamic representation learning methods have gained attention, offering benefits like reduced learning time and improved accuracy by utilizing temporal information. T-batching is a valuable technique for training dynamic network models that reduces training time while preserving vital conditions for accurate modeling. However, we have identified a limitation in the training loss function used with t-batching. Through mathematical analysis, we propose two alternative loss functions that overcome these issues, resulting in enhanced training performance. We extensively evaluate the proposed loss functions on synthetic and real-world dynamic networks. The results consistently demonstrate superior performance compared to the original loss function. Notably, in a real-world network characterized by diverse user interaction histories, the proposed loss functions achieved more than 26.9% enhancement in Mean Reciprocal Rank (MRR) and more than 11.8% improvement in Recall@10. These findings underscore the efficacy of the proposed loss functions in dynamic network modeling.
Double-Weighting for Covariate Shift Adaptation
Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates x) of training and testing samples p_tr(x) and p_te(x) are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio p_te(x)/p_tr(x) to weight training samples (reweighted methods) or using the ratio p_tr(x)/p_te(x) to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments.
Evaluating Unsupervised Text Classification: Zero-shot and Similarity-based Approaches
Text classification of unseen classes is a challenging Natural Language Processing task and is mainly attempted using two different types of approaches. Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations. Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents. Although existing studies have already investigated individual approaches to these categories, the experiments in literature do not provide a consistent comparison. This paper addresses this gap by conducting a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes. Different state-of-the-art approaches are benchmarked on four text classification datasets, including a new dataset from the medical domain. Additionally, novel SimCSE and SBERT-based baselines are proposed, as other baselines used in existing work yield weak classification results and are easily outperformed. Finally, the novel similarity-based Lbl2TransformerVec approach is presented, which outperforms previous state-of-the-art approaches in unsupervised text classification. Our experiments show that similarity-based approaches significantly outperform zero-shot approaches in most cases. Additionally, using SimCSE or SBERT embeddings instead of simpler text representations increases similarity-based classification results even further.
Class-dependent Compression of Deep Neural Networks
Today's deep neural networks require substantial computation resources for their training, storage, and inference, which limits their effective use on resource-constrained devices. Many recent research activities explore different options for compressing and optimizing deep models. On the one hand, in many real-world applications, we face the data imbalance challenge, i.e. when the number of labeled instances of one class considerably outweighs the number of labeled instances of the other class. On the other hand, applications may pose a class imbalance problem, i.e. higher number of false positives produced when training a model and optimizing its performance may be tolerable, yet the number of false negatives must stay low. The problem originates from the fact that some classes are more important for the application than others, e.g. detection problems in medical and surveillance domains. Motivated by the success of the lottery ticket hypothesis, in this paper we propose an iterative deep model compression technique, which keeps the number of false negatives of the compressed model close to the one of the original model at the price of increasing the number of false positives if necessary. Our experimental evaluation using two benchmark data sets shows that the resulting compressed sub-networks 1) achieve up to 35% lower number of false negatives than the compressed model without class optimization, 2) provide an overall higher AUC_ROC measure, and 3) use up to 99% fewer parameters compared to the original network.
Disposable Transfer Learning for Selective Source Task Unlearning
Transfer learning is widely used for training deep neural networks (DNN) for building a powerful representation. Even after the pre-trained model is adapted for the target task, the representation performance of the feature extractor is retained to some extent. As the performance of the pre-trained model can be considered the private property of the owner, it is natural to seek the exclusive right of the generalized performance of the pre-trained weight. To address this issue, we suggest a new paradigm of transfer learning called disposable transfer learning (DTL), which disposes of only the source task without degrading the performance of the target task. To achieve knowledge disposal, we propose a novel loss named Gradient Collision loss (GC loss). GC loss selectively unlearns the source knowledge by leading the gradient vectors of mini-batches in different directions. Whether the model successfully unlearns the source task is measured by piggyback learning accuracy (PL accuracy). PL accuracy estimates the vulnerability of knowledge leakage by retraining the scrubbed model on a subset of source data or new downstream data. We demonstrate that GC loss is an effective approach to the DTL problem by showing that the model trained with GC loss retains the performance on the target task with a significantly reduced PL accuracy.
Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
There is extensive interest in metric learning methods for image retrieval. Many metric learning loss functions focus on learning a correct ranking of training samples, but strongly overfit semantically inconsistent labels and require a large amount of data. To address these shortcomings, we propose a new metric learning method, called contextual loss, which optimizes contextual similarity in addition to cosine similarity. Our contextual loss implicitly enforces semantic consistency among neighbors while converging to the correct ranking. We empirically show that the proposed loss is more robust to label noise, and is less prone to overfitting even when a large portion of train data is withheld. Extensive experiments demonstrate that our method achieves a new state-of-the-art across four image retrieval benchmarks and multiple different evaluation settings. Code is available at: https://github.com/Chris210634/metric-learning-using-contextual-similarity
Self-Labeling Refinement for Robust Representation Learning with Bootstrap Your Own Latent
In this work, we have worked towards two major goals. Firstly, we have investigated the importance of Batch Normalisation (BN) layers in a non-contrastive representation learning framework called Bootstrap Your Own Latent (BYOL). We conducted several experiments to conclude that BN layers are not necessary for representation learning in BYOL. Moreover, BYOL only learns from the positive pairs of images but ignores other semantically similar images in the same input batch. For the second goal, we have introduced two new loss functions to determine the semantically similar pairs in the same input batch of images and reduce the distance between their representations. These loss functions are Cross-Cosine Similarity Loss (CCSL) and Cross-Sigmoid Similarity Loss (CSSL). Using the proposed loss functions, we are able to surpass the performance of Vanilla BYOL (71.04%) by training the BYOL framework using CCSL loss (76.87%) on the STL10 dataset. BYOL trained using CSSL loss performs comparably with Vanilla BYOL.
Transfer training from smaller language model
Large language models have led to state-of-the-art accuracies across a range of tasks. However,training large language model needs massive computing resource, as more and more open source pre-training models are available, it is worthy to study how to take full advantage of available model. We find a method to save training time and resource cost by changing the small well-trained model to large model. We initialize a larger target model from a smaller source model by copy weight values from source model and padding with zeros or small initialization values on it to make the source and target model have approximate outputs, which is valid due to block matrix multiplication and residual connection in transformer structure. We test the target model on several data sets and find it is still comparable with the source model. When we continue training the target model, the training loss can start from a smaller value.
Novel Class Discovery: an Introduction and Key Concepts
Novel Class Discovery (NCD) is a growing field where we are given during training a labeled set of known classes and an unlabeled set of different classes that must be discovered. In recent years, many methods have been proposed to address this problem, and the field has begun to mature. In this paper, we provide a comprehensive survey of the state-of-the-art NCD methods. We start by formally defining the NCD problem and introducing important notions. We then give an overview of the different families of approaches, organized by the way they transfer knowledge from the labeled set to the unlabeled set. We find that they either learn in two stages, by first extracting knowledge from the labeled data only and then applying it to the unlabeled data, or in one stage by conjointly learning on both sets. For each family, we describe their general principle and detail a few representative methods. Then, we briefly introduce some new related tasks inspired by the increasing number of NCD works. We also present some common tools and techniques used in NCD, such as pseudo labeling, self-supervised learning and contrastive learning. Finally, to help readers unfamiliar with the NCD problem differentiate it from other closely related domains, we summarize some of the closest areas of research and discuss their main differences.
TACLE: Task and Class-aware Exemplar-free Semi-supervised Class Incremental Learning
We propose a novel TACLE (TAsk and CLass-awarE) framework to address the relatively unexplored and challenging problem of exemplar-free semi-supervised class incremental learning. In this scenario, at each new task, the model has to learn new classes from both (few) labeled and unlabeled data without access to exemplars from previous classes. In addition to leveraging the capabilities of pre-trained models, TACLE proposes a novel task-adaptive threshold, thereby maximizing the utilization of the available unlabeled data as incremental learning progresses. Additionally, to enhance the performance of the under-represented classes within each task, we propose a class-aware weighted cross-entropy loss. We also exploit the unlabeled data for classifier alignment, which further enhances the model performance. Extensive experiments on benchmark datasets, namely CIFAR10, CIFAR100, and ImageNet-Subset100 demonstrate the effectiveness of the proposed TACLE framework. We further showcase its effectiveness when the unlabeled data is imbalanced and also for the extreme case of one labeled example per class.
The merits of Universal Language Model Fine-tuning for Small Datasets -- a case with Dutch book reviews
We evaluated the effectiveness of using language models, that were pre-trained in one domain, as the basis for a classification model in another domain: Dutch book reviews. Pre-trained language models have opened up new possibilities for classification tasks with limited labelled data, because representation can be learned in an unsupervised fashion. In our experiments we have studied the effects of training set size (100-1600 items) on the prediction accuracy of a ULMFiT classifier, based on a language models that we pre-trained on the Dutch Wikipedia. We also compared ULMFiT to Support Vector Machines, which is traditionally considered suitable for small collections. We found that ULMFiT outperforms SVM for all training set sizes and that satisfactory results (~90%) can be achieved using training sets that can be manually annotated within a few hours. We deliver both our new benchmark collection of Dutch book reviews for sentiment classification as well as the pre-trained Dutch language model to the community.
Can Score-Based Generative Modeling Effectively Handle Medical Image Classification?
The remarkable success of deep learning in recent years has prompted applications in medical image classification and diagnosis tasks. While classification models have demonstrated robustness in classifying simpler datasets like MNIST or natural images such as ImageNet, this resilience is not consistently observed in complex medical image datasets where data is more scarce and lacks diversity. Moreover, previous findings on natural image datasets have indicated a potential trade-off between data likelihood and classification accuracy. In this study, we explore the use of score-based generative models as classifiers for medical images, specifically mammographic images. Our findings suggest that our proposed generative classifier model not only achieves superior classification results on CBIS-DDSM, INbreast and Vin-Dr Mammo datasets, but also introduces a novel approach to image classification in a broader context. Our code is publicly available at https://github.com/sushmitasarker/sgc_for_medical_image_classification
Circle Loss: A Unified Perspective of Pair Similarity Optimization
This paper provides a pair similarity optimization viewpoint on deep feature learning, aiming to maximize the within-class similarity s_p and minimize the between-class similarity s_n. We find a majority of loss functions, including the triplet loss and the softmax plus cross-entropy loss, embed s_n and s_p into similarity pairs and seek to reduce (s_n-s_p). Such an optimization manner is inflexible, because the penalty strength on every single similarity score is restricted to be equal. Our intuition is that if a similarity score deviates far from the optimum, it should be emphasized. To this end, we simply re-weight each similarity to highlight the less-optimized similarity scores. It results in a Circle loss, which is named due to its circular decision boundary. The Circle loss has a unified formula for two elemental deep feature learning approaches, i.e. learning with class-level labels and pair-wise labels. Analytically, we show that the Circle loss offers a more flexible optimization approach towards a more definite convergence target, compared with the loss functions optimizing (s_n-s_p). Experimentally, we demonstrate the superiority of the Circle loss on a variety of deep feature learning tasks. On face recognition, person re-identification, as well as several fine-grained image retrieval datasets, the achieved performance is on par with the state of the art.
UnStar: Unlearning with Self-Taught Anti-Sample Reasoning for LLMs
The key components of machine learning are data samples for training, model for learning patterns, and loss function for optimizing accuracy. Analogously, unlearning can potentially be achieved through anti-data samples (or anti-samples), unlearning method, and reversed loss function. While prior research has explored unlearning methods and reversed loss functions, the potential of anti-samples remains largely untapped. In this paper, we introduce UnSTAR: Unlearning with Self-Taught Anti-Sample Reasoning for large language models (LLMs). Our contributions are threefold; first, we propose a novel concept of anti-sample-induced unlearning; second, we generate anti-samples by leveraging misleading rationales, which help reverse learned associations and accelerate the unlearning process; and third, we enable fine-grained targeted unlearning, allowing for the selective removal of specific associations without impacting related knowledge - something not achievable by previous works. Results demonstrate that anti-samples offer an efficient, targeted unlearning strategy for LLMs, opening new avenues for privacy-preserving machine learning and model modification.
Penalizing Unfairness in Binary Classification
We present a new approach for mitigating unfairness in learned classifiers. In particular, we focus on binary classification tasks over individuals from two populations, where, as our criterion for fairness, we wish to achieve similar false positive rates in both populations, and similar false negative rates in both populations. As a proof of concept, we implement our approach and empirically evaluate its ability to achieve both fairness and accuracy, using datasets from the fields of criminal risk assessment, credit, lending, and college admissions.
Subclass-balancing Contrastive Learning for Long-tailed Recognition
Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications. Existing methods such as data reweighing, resampling, and supervised contrastive learning enforce the class balance with a price of introducing imbalance between instances of head class and tail class, which may ignore the underlying rich semantic substructures of the former and exaggerate the biases in the latter. We overcome these drawbacks by a novel ``subclass-balancing contrastive learning (SBCL)'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes and enforce representations to capture the two-layer class hierarchy between the original classes and their subclasses. Since the clustering is conducted in the representation space and updated during the course of training, the subclass labels preserve the semantic substructures of head classes. Meanwhile, it does not overemphasize tail class samples, so each individual instance contribute to the representation learning equally. Hence, our method achieves both the instance- and subclass-balance, while the original class labels are also learned through contrastive learning among subclasses from different classes. We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance. In addition, we present extensive analyses and ablation studies of SBCL to verify its advantages.
A Theoretical Analysis of Contrastive Unsupervised Representation Learning
Recent empirical works have successfully used unlabeled data to learn feature representations that are broadly useful in downstream classification tasks. Several of these methods are reminiscent of the well-known word2vec embedding algorithm: leveraging availability of pairs of semantically "similar" data points and "negative samples," the learner forces the inner product of representations of similar pairs with each other to be higher on average than with negative samples. The current paper uses the term contrastive learning for such algorithms and presents a theoretical framework for analyzing them by introducing latent classes and hypothesizing that semantically similar points are sampled from the same latent class. This framework allows us to show provable guarantees on the performance of the learned representations on the average classification task that is comprised of a subset of the same set of latent classes. Our generalization bound also shows that learned representations can reduce (labeled) sample complexity on downstream tasks. We conduct controlled experiments in both the text and image domains to support the theory.
Exploring Weight Balancing on Long-Tailed Recognition Problem
Recognition problems in long-tailed data, in which the sample size per class is heavily skewed, have gained importance because the distribution of the sample size per class in a dataset is generally exponential unless the sample size is intentionally adjusted. Various methods have been devised to address these problems. Recently, weight balancing, which combines well-known classical regularization techniques with two-stage training, has been proposed. Despite its simplicity, it is known for its high performance compared with existing methods devised in various ways. However, there is a lack of understanding as to why this method is effective for long-tailed data. In this study, we analyze weight balancing by focusing on neural collapse and the cone effect at each training stage and found that it can be decomposed into an increase in Fisher's discriminant ratio of the feature extractor caused by weight decay and cross entropy loss and implicit logit adjustment caused by weight decay and class-balanced loss. Our analysis enables the training method to be further simplified by reducing the number of training stages to one while increasing accuracy.
Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
Condensed Gradient Boosting
This paper presents a computationally efficient variant of gradient boosting for multi-class classification and multi-output regression tasks. Standard gradient boosting uses a 1-vs-all strategy for classifications tasks with more than two classes. This strategy translates in that one tree per class and iteration has to be trained. In this work, we propose the use of multi-output regressors as base models to handle the multi-class problem as a single task. In addition, the proposed modification allows the model to learn multi-output regression problems. An extensive comparison with other multi-ouptut based gradient boosting methods is carried out in terms of generalization and computational efficiency. The proposed method showed the best trade-off between generalization ability and training and predictions speeds.
Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs
Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subset of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale Llama-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks.
ZeroBERTo: Leveraging Zero-Shot Text Classification by Topic Modeling
Traditional text classification approaches often require a good amount of labeled data, which is difficult to obtain, especially in restricted domains or less widespread languages. This lack of labeled data has led to the rise of low-resource methods, that assume low data availability in natural language processing. Among them, zero-shot learning stands out, which consists of learning a classifier without any previously labeled data. The best results reported with this approach use language models such as Transformers, but fall into two problems: high execution time and inability to handle long texts as input. This paper proposes a new model, ZeroBERTo, which leverages an unsupervised clustering step to obtain a compressed data representation before the classification task. We show that ZeroBERTo has better performance for long inputs and shorter execution time, outperforming XLM-R by about 12% in the F1 score in the FolhaUOL dataset. Keywords: Low-Resource NLP, Unlabeled data, Zero-Shot Learning, Topic Modeling, Transformers.
Learning Support and Trivial Prototypes for Interpretable Image Classification
Prototypical part network (ProtoPNet) methods have been designed to achieve interpretable classification by associating predictions with a set of training prototypes, which we refer to as trivial prototypes because they are trained to lie far from the classification boundary in the feature space. Note that it is possible to make an analogy between ProtoPNet and support vector machine (SVM) given that the classification from both methods relies on computing similarity with a set of training points (i.e., trivial prototypes in ProtoPNet, and support vectors in SVM). However, while trivial prototypes are located far from the classification boundary, support vectors are located close to this boundary, and we argue that this discrepancy with the well-established SVM theory can result in ProtoPNet models with inferior classification accuracy. In this paper, we aim to improve the classification of ProtoPNet with a new method to learn support prototypes that lie near the classification boundary in the feature space, as suggested by the SVM theory. In addition, we target the improvement of classification results with a new model, named ST-ProtoPNet, which exploits our support prototypes and the trivial prototypes to provide more effective classification. Experimental results on CUB-200-2011, Stanford Cars, and Stanford Dogs datasets demonstrate that ST-ProtoPNet achieves state-of-the-art classification accuracy and interpretability results. We also show that the proposed support prototypes tend to be better localised in the object of interest rather than in the background region.
Sy-CON: Symmetric Contrastive Loss for Continual Self-Supervised Representation Learning
We introduce a novel and general loss function, called Symmetric Contrastive (Sy-CON) loss, for effective continual self-supervised learning (CSSL). We first argue that the conventional loss form of continual learning which consists of single task-specific loss (for plasticity) and a regularizer (for stability) may not be ideal for contrastive loss based CSSL that focus on representation learning. Our reasoning is that, in contrastive learning based methods, the task-specific loss would suffer from decreasing diversity of negative samples and the regularizer may hinder learning new distinctive representations. To that end, we propose Sy-CON that consists of two losses (one for plasticity and the other for stability) with symmetric dependence on current and past models' negative sample embeddings. We argue our model can naturally find good trade-off between the plasticity and stability without any explicit hyperparameter tuning. We validate the effectiveness of our approach through extensive experiments, demonstrating that MoCo-based implementation of Sy-CON loss achieves superior performance compared to other state-of-the-art CSSL methods.
"Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts
Machine learning models frequently experience performance drops under distribution shifts. The underlying cause of such shifts may be multiple simultaneous factors such as changes in data quality, differences in specific covariate distributions, or changes in the relationship between label and features. When a model does fail during deployment, attributing performance change to these factors is critical for the model developer to identify the root cause and take mitigating actions. In this work, we introduce the problem of attributing performance differences between environments to distribution shifts in the underlying data generating mechanisms. We formulate the problem as a cooperative game where the players are distributions. We define the value of a set of distributions to be the change in model performance when only this set of distributions has changed between environments, and derive an importance weighting method for computing the value of an arbitrary set of distributions. The contribution of each distribution to the total performance change is then quantified as its Shapley value. We demonstrate the correctness and utility of our method on synthetic, semi-synthetic, and real-world case studies, showing its effectiveness in attributing performance changes to a wide range of distribution shifts.
Apuntes de Redes Neuronales Artificiales
These handouts are designed for people who is just starting involved with the topic artificial neural networks. We show how it works a single artificial neuron (McCulloch & Pitt model), mathematically and graphically. We do explain the delta rule, a learning algorithm to find the neuron weights. We also present some examples in MATLAB/Octave. There are examples for classification task for lineal and non-lineal problems. At the end, we present an artificial neural network, a feed-forward neural network along its learning algorithm backpropagation. ----- Estos apuntes est\'an dise\~nados para personas que por primera vez se introducen en el tema de las redes neuronales artificiales. Se muestra el funcionamiento b\'asico de una neurona, matem\'aticamente y gr\'aficamente. Se explica la Regla Delta, algoritmo deaprendizaje para encontrar los pesos de una neurona. Tambi\'en se muestran ejemplos en MATLAB/Octave. Hay ejemplos para problemas de clasificaci\'on, para problemas lineales y no-lineales. En la parte final se muestra la arquitectura de red neuronal artificial conocida como backpropagation.
Efficient Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories
Training a large and state-of-the-art machine learning model typically necessitates the use of large-scale datasets, which, in turn, makes the training and parameter-tuning process expensive and time-consuming. Some researchers opt to distil information from real-world datasets into tiny and compact synthetic datasets while maintaining their ability to train a well-performing model, hence proposing a data-efficient method known as Dataset Distillation (DD). Despite recent progress in this field, existing methods still underperform and cannot effectively replace large datasets. In this paper, unlike previous methods that focus solely on improving the efficacy of student distillation, we are the first to recognize the important interplay between expert and student. We argue the significant impact of expert smoothness when employing more potent expert trajectories in subsequent dataset distillation. Based on this, we introduce the integration of clipping loss and gradient penalty to regulate the rate of parameter changes in expert trajectories. Furthermore, in response to the sensitivity exhibited towards randomly initialized variables during distillation, we propose representative initialization for synthetic dataset and balanced inner-loop loss. Finally, we present two enhancement strategies, namely intermediate matching loss and weight perturbation, to mitigate the potential occurrence of cumulative errors. We conduct extensive experiments on datasets of different scales, sizes, and resolutions. The results demonstrate that the proposed method significantly outperforms prior methods.
Wide and Deep Neural Networks Achieve Optimality for Classification
While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.
Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions
Due to the rise of privacy concerns, in many practical applications the training data is aggregated before being shared with the learner, in order to protect privacy of users' sensitive responses. In an aggregate learning framework, the dataset is grouped into bags of samples, where each bag is available only with an aggregate response, providing a summary of individuals' responses in that bag. In this paper, we study two natural loss functions for learning from aggregate responses: bag-level loss and the instance-level loss. In the former, the model is learnt by minimizing a loss between aggregate responses and aggregate model predictions, while in the latter the model aims to fit individual predictions to the aggregate responses. In this work, we show that the instance-level loss can be perceived as a regularized form of the bag-level loss. This observation lets us compare the two approaches with respect to bias and variance of the resulting estimators, and introduce a novel interpolating estimator which combines the two approaches. For linear regression tasks, we provide a precise characterization of the risk of the interpolating estimator in an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis allows us to theoretically understand the effect of different factors, such as bag size on the model prediction risk. In addition, we propose a mechanism for differentially private learning from aggregate responses and derive the optimal bag size in terms of prediction risk-privacy trade-off. We also carry out thorough experiments to corroborate our theory and show the efficacy of the interpolating estimator.
An Empirical Study and Analysis of Generalized Zero-Shot Learning for Object Recognition in the Wild
Zero-shot learning (ZSL) methods have been studied in the unrealistic setting where test data are assumed to come from unseen classes only. In this paper, we advocate studying the problem of generalized zero-shot learning (GZSL) where the test data's class memberships are unconstrained. We show empirically that naively using the classifiers constructed by ZSL approaches does not perform well in the generalized setting. Motivated by this, we propose a simple but effective calibration method that can be used to balance two conflicting forces: recognizing data from seen classes versus those from unseen ones. We develop a performance metric to characterize such a trade-off and examine the utility of this metric in evaluating various ZSL approaches. Our analysis further shows that there is a large gap between the performance of existing approaches and an upper bound established via idealized semantic embeddings, suggesting that improving class semantic embeddings is vital to GZSL.
DOT: A Distillation-Oriented Trainer
Knowledge distillation transfers knowledge from a large model to a small one via task and distillation losses. In this paper, we observe a trade-off between task and distillation losses, i.e., introducing distillation loss limits the convergence of task loss. We believe that the trade-off results from the insufficient optimization of distillation loss. The reason is: The teacher has a lower task loss than the student, and a lower distillation loss drives the student more similar to the teacher, then a better-converged task loss could be obtained. To break the trade-off, we propose the Distillation-Oriented Trainer (DOT). DOT separately considers gradients of task and distillation losses, then applies a larger momentum to distillation loss to accelerate its optimization. We empirically prove that DOT breaks the trade-off, i.e., both losses are sufficiently optimized. Extensive experiments validate the superiority of DOT. Notably, DOT achieves a +2.59% accuracy improvement on ImageNet-1k for the ResNet50-MobileNetV1 pair. Conclusively, DOT greatly benefits the student's optimization properties in terms of loss convergence and model generalization. Code will be made publicly available.
LLM Unlearning via Loss Adjustment with Only Forget Data
Unlearning in Large Language Models (LLMs) is essential for ensuring ethical and responsible AI use, especially in addressing privacy leak, bias, safety, and evolving regulations. Existing approaches to LLM unlearning often rely on retain data or a reference LLM, yet they struggle to adequately balance unlearning performance with overall model utility. This challenge arises because leveraging explicit retain data or implicit knowledge of retain data from a reference LLM to fine-tune the model tends to blur the boundaries between the forgotten and retain data, as different queries often elicit similar responses. In this work, we propose eliminating the need to retain data or the reference LLM for response calibration in LLM unlearning. Recognizing that directly applying gradient ascent on the forget data often leads to optimization instability and poor performance, our method guides the LLM on what not to respond to, and importantly, how to respond, based on the forget data. Hence, we introduce Forget data only Loss AjustmenT (FLAT), a "flat" loss adjustment approach which addresses these issues by maximizing f-divergence between the available template answer and the forget answer only w.r.t. the forget data. The variational form of the defined f-divergence theoretically provides a way of loss adjustment by assigning different importance weights for the learning w.r.t. template responses and the forgetting of responses subject to unlearning. Empirical results demonstrate that our approach not only achieves superior unlearning performance compared to existing methods but also minimizes the impact on the model's retained capabilities, ensuring high utility across diverse tasks, including copyrighted content unlearning on Harry Potter dataset and MUSE Benchmark, and entity unlearning on the TOFU dataset.
Zero-Shot Learning -- A Comprehensive Evaluation of the Good, the Bad and the Ugly
Due to the importance of zero-shot learning, i.e. classifying images where there is a lack of labeled training data, the number of proposed approaches has recently increased steadily. We argue that it is time to take a step back and to analyze the status quo of the area. The purpose of this paper is three-fold. First, given the fact that there is no agreed upon zero-shot learning benchmark, we first define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets used for this task. This is an important contribution as published results are often not comparable and sometimes even flawed due to, e.g. pre-training on zero-shot test classes. Moreover, we propose a new zero-shot learning dataset, the Animals with Attributes 2 (AWA2) dataset which we make publicly available both in terms of image features and the images themselves. Second, we compare and analyze a significant number of the state-of-the-art methods in depth, both in the classic zero-shot setting but also in the more realistic generalized zero-shot setting. Finally, we discuss in detail the limitations of the current status of the area which can be taken as a basis for advancing it.
Prediction Error-based Classification for Class-Incremental Learning
Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.
A systematic study of the class imbalance problem in convolutional neural networks
In this study, we systematically investigate the impact of class imbalance on classification performance of convolutional neural networks (CNNs) and compare frequently used methods to address the issue. Class imbalance is a common problem that has been comprehensively studied in classical machine learning, yet very limited systematic research is available in the context of deep learning. In our study, we use three benchmark datasets of increasing complexity, MNIST, CIFAR-10 and ImageNet, to investigate the effects of imbalance on classification and perform an extensive comparison of several methods to address the issue: oversampling, undersampling, two-phase training, and thresholding that compensates for prior class probabilities. Our main evaluation metric is area under the receiver operating characteristic curve (ROC AUC) adjusted to multi-class tasks since overall accuracy metric is associated with notable difficulties in the context of imbalanced data. Based on results from our experiments we conclude that (i) the effect of class imbalance on classification performance is detrimental; (ii) the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; (iii) oversampling should be applied to the level that completely eliminates the imbalance, whereas the optimal undersampling ratio depends on the extent of imbalance; (iv) as opposed to some classical machine learning models, oversampling does not cause overfitting of CNNs; (v) thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
The Optimality of Kernel Classifiers in Sobolev Space
Kernel methods are widely used in machine learning, especially for classification problems. However, the theoretical analysis of kernel classification is still limited. This paper investigates the statistical performances of kernel classifiers. With some mild assumptions on the conditional probability eta(x)=P(Y=1mid X=x), we derive an upper bound on the classification excess risk of a kernel classifier using recent advances in the theory of kernel regression. We also obtain a minimax lower bound for Sobolev spaces, which shows the optimality of the proposed classifier. Our theoretical results can be extended to the generalization error of overparameterized neural network classifiers. To make our theoretical results more applicable in realistic settings, we also propose a simple method to estimate the interpolation smoothness of 2eta(x)-1 and apply the method to real datasets.
Regression with Sensor Data Containing Incomplete Observations
This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments.
Impact of Missing Values in Machine Learning: A Comprehensive Analysis
Machine learning (ML) has become a ubiquitous tool across various domains of data mining and big data analysis. The efficacy of ML models depends heavily on high-quality datasets, which are often complicated by the presence of missing values. Consequently, the performance and generalization of ML models are at risk in the face of such datasets. This paper aims to examine the nuanced impact of missing values on ML workflows, including their types, causes, and consequences. Our analysis focuses on the challenges posed by missing values, including biased inferences, reduced predictive power, and increased computational burdens. The paper further explores strategies for handling missing values, including imputation techniques and removal strategies, and investigates how missing values affect model evaluation metrics and introduces complexities in cross-validation and model selection. The study employs case studies and real-world examples to illustrate the practical implications of addressing missing values. Finally, the discussion extends to future research directions, emphasizing the need for handling missing values ethically and transparently. The primary goal of this paper is to provide insights into the pervasive impact of missing values on ML models and guide practitioners toward effective strategies for achieving robust and reliable model outcomes.
Mathematical Justification of Hard Negative Mining via Isometric Approximation Theorem
In deep metric learning, the Triplet Loss has emerged as a popular method to learn many computer vision and natural language processing tasks such as facial recognition, object detection, and visual-semantic embeddings. One issue that plagues the Triplet Loss is network collapse, an undesirable phenomenon where the network projects the embeddings of all data onto a single point. Researchers predominately solve this problem by using triplet mining strategies. While hard negative mining is the most effective of these strategies, existing formulations lack strong theoretical justification for their empirical success. In this paper, we utilize the mathematical theory of isometric approximation to show an equivalence between the Triplet Loss sampled by hard negative mining and an optimization problem that minimizes a Hausdorff-like distance between the neural network and its ideal counterpart function. This provides the theoretical justifications for hard negative mining's empirical efficacy. In addition, our novel application of the isometric approximation theorem provides the groundwork for future forms of hard negative mining that avoid network collapse. Our theory can also be extended to analyze other Euclidean space-based metric learning methods like Ladder Loss or Contrastive Learning.
On Generalizations of Some Distance Based Classifiers for HDLSS Data
In high dimension, low sample size (HDLSS) settings, classifiers based on Euclidean distances like the nearest neighbor classifier and the average distance classifier perform quite poorly if differences between locations of the underlying populations get masked by scale differences. To rectify this problem, several modifications of these classifiers have been proposed in the literature. However, existing methods are confined to location and scale differences only, and often fail to discriminate among populations differing outside of the first two moments. In this article, we propose some simple transformations of these classifiers resulting into improved performance even when the underlying populations have the same location and scale. We further propose a generalization of these classifiers based on the idea of grouping of variables. The high-dimensional behavior of the proposed classifiers is studied theoretically. Numerical experiments with a variety of simulated examples as well as an extensive analysis of real data sets exhibit advantages of the proposed methods.
MoMo: Momentum Models for Adaptive Learning Rates
Training a modern machine learning architecture on a new task requires extensive learning-rate tuning, which comes at a high computational cost. Here we develop new adaptive learning rates that can be used with any momentum method, and require less tuning to perform well. We first develop MoMo, a Momentum Model based adaptive learning rate for SGD-M (Stochastic gradient descent with momentum). MoMo uses momentum estimates of the batch losses and gradients sampled at each iteration to build a model of the loss function. Our model also makes use of any known lower bound of the loss function by using truncation, e.g. most losses are lower-bounded by zero. We then approximately minimize this model at each iteration to compute the next step. We show how MoMo can be used in combination with any momentum-based method, and showcase this by developing MoMo-Adam - which is Adam with our new model-based adaptive learning rate. Additionally, for losses with unknown lower bounds, we develop on-the-fly estimates of a lower bound, that are incorporated in our model. Through extensive numerical experiments, we demonstrate that MoMo and MoMo-Adam improve over SGD-M and Adam in terms of accuracy and robustness to hyperparameter tuning for training image classifiers on MNIST, CIFAR10, CIFAR100, Imagenet, recommender systems on the Criteo dataset, and a transformer model on the translation task IWSLT14.
Towards the Fundamental Limits of Knowledge Transfer over Finite Domains
We characterize the statistical efficiency of knowledge transfer through n samples from a teacher to a probabilistic student classifier with input space mathcal S over labels mathcal A. We show that privileged information at three progressive levels accelerates the transfer. At the first level, only samples with hard labels are known, via which the maximum likelihood estimator attains the minimax rate {|{mathcal S||{mathcal A}|}/{n}}. The second level has the teacher probabilities of sampled labels available in addition, which turns out to boost the convergence rate lower bound to {{|{mathcal S}||{mathcal A}|}/{n}}. However, under this second data acquisition protocol, minimizing a naive adaptation of the cross-entropy loss results in an asymptotically biased student. We overcome this limitation and achieve the fundamental limit by using a novel empirical variant of the squared error logit loss. The third level further equips the student with the soft labels (complete logits) on {mathcal A} given every sampled input, thereby provably enables the student to enjoy a rate {|{mathcal S}|}/{n} free of |{mathcal A}|. We find any Kullback-Leibler divergence minimizer to be optimal in the last case. Numerical simulations distinguish the four learners and corroborate our theory.
Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier
Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods.
Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization with Medical Applications
Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled text, utilizing conjunctive clauses to represent the particular facets of each category. Indeed, even the absence of terms (negated features) can be used for categorization purposes. Our empirical comparison with Na\"ive Bayes, decision trees, linear support vector machines (SVMs), random forest, long short-term memory (LSTM) neural networks, and other techniques, is quite conclusive. The Tsetlin Machine either performs on par with or outperforms all of the evaluated methods on both the 20 Newsgroups and IMDb datasets, as well as on a non-public clinical dataset. On average, the Tsetlin Machine delivers the best recall and precision scores across the datasets. Finally, our GPU implementation of the Tsetlin Machine executes 5 to 15 times faster than the CPU implementation, depending on the dataset. We thus believe that our novel approach can have a significant impact on a wide range of text analysis applications, forming a promising starting point for deeper natural language understanding with the Tsetlin Machine.
Improve Representation for Imbalanced Regression through Geometric Constraints
In representation learning, uniformity refers to the uniform feature distribution in the latent space (i.e., unit hypersphere). Previous work has shown that improving uniformity contributes to the learning of under-represented classes. However, most of the previous work focused on classification; the representation space of imbalanced regression remains unexplored. Classification-based methods are not suitable for regression tasks because they cluster features into distinct groups without considering the continuous and ordered nature essential for regression. In a geometric aspect, we uniquely focus on ensuring uniformity in the latent space for imbalanced regression through two key losses: enveloping and homogeneity. The enveloping loss encourages the induced trace to uniformly occupy the surface of a hypersphere, while the homogeneity loss ensures smoothness, with representations evenly spaced at consistent intervals. Our method integrates these geometric principles into the data representations via a Surrogate-driven Representation Learning (SRL) framework. Experiments with real-world regression and operator learning tasks highlight the importance of uniformity in imbalanced regression and validate the efficacy of our geometry-based loss functions.
Unsupervised Learning under Latent Label Shift
What sorts of structure might enable a learner to discover classes from unlabeled data? Traditional approaches rely on feature-space similarity and heroic assumptions on the data. In this paper, we introduce unsupervised learning under Latent Label Shift (LLS), where we have access to unlabeled data from multiple domains such that the label marginals p_d(y) can shift across domains but the class conditionals p(x|y) do not. This work instantiates a new principle for identifying classes: elements that shift together group together. For finite input spaces, we establish an isomorphism between LLS and topic modeling: inputs correspond to words, domains to documents, and labels to topics. Addressing continuous data, we prove that when each label's support contains a separable region, analogous to an anchor word, oracle access to p(d|x) suffices to identify p_d(y) and p_d(y|x) up to permutation. Thus motivated, we introduce a practical algorithm that leverages domain-discriminative models as follows: (i) push examples through domain discriminator p(d|x); (ii) discretize the data by clustering examples in p(d|x) space; (iii) perform non-negative matrix factorization on the discrete data; (iv) combine the recovered p(y|d) with the discriminator outputs p(d|x) to compute p_d(y|x) ; forall d. With semi-synthetic experiments, we show that our algorithm can leverage domain information to improve upon competitive unsupervised classification methods. We reveal a failure mode of standard unsupervised classification methods when feature-space similarity does not indicate true groupings, and show empirically that our method better handles this case. Our results establish a deep connection between distribution shift and topic modeling, opening promising lines for future work.
QuartzNet: Deep Automatic Speech Recognition with 1D Time-Channel Separable Convolutions
We propose a new end-to-end neural acoustic model for automatic speech recognition. The model is composed of multiple blocks with residual connections between them. Each block consists of one or more modules with 1D time-channel separable convolutional layers, batch normalization, and ReLU layers. It is trained with CTC loss. The proposed network achieves near state-of-the-art accuracy on LibriSpeech and Wall Street Journal, while having fewer parameters than all competing models. We also demonstrate that this model can be effectively fine-tuned on new datasets.
Center Loss Regularization for Continual Learning
The ability to learn different tasks sequentially is essential to the development of artificial intelligence. In general, neural networks lack this capability, the major obstacle being catastrophic forgetting. It occurs when the incrementally available information from non-stationary data distributions is continually acquired, disrupting what the model has already learned. Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks while keeping the decision boundaries unchanged. We employ the center loss as a regularization penalty that enforces new tasks' features to have the same class centers as old tasks and makes the features highly discriminative. This, in turn, leads to the least forgetting of already learned information. This method is easy to implement, requires minimal computational and memory overhead, and allows the neural network to maintain high performance across many sequentially encountered tasks. We also demonstrate that using the center loss in conjunction with the memory replay outperforms other replay-based strategies. Along with standard MNIST variants for continual learning, we apply our method to continual domain adaptation scenarios with the Digits and PACS datasets. We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
On Pairwise Clustering with Side Information
Pairwise clustering, in general, partitions a set of items via a known similarity function. In our treatment, clustering is modeled as a transductive prediction problem. Thus rather than beginning with a known similarity function, the function instead is hidden and the learner only receives a random sample consisting of a subset of the pairwise similarities. An additional set of pairwise side-information may be given to the learner, which then determines the inductive bias of our algorithms. We measure performance not based on the recovery of the hidden similarity function, but instead on how well we classify each item. We give tight bounds on the number of misclassifications. We provide two algorithms. The first algorithm SACA is a simple agglomerative clustering algorithm which runs in near linear time, and which serves as a baseline for our analyses. Whereas the second algorithm, RGCA, enables the incorporation of side-information which may lead to improved bounds at the cost of a longer running time.
Labrador: Exploring the Limits of Masked Language Modeling for Laboratory Data
In this work we introduce Labrador, a pre-trained Transformer model for laboratory data. Labrador and BERT were pre-trained on a corpus of 100 million lab test results from electronic health records (EHRs) and evaluated on various downstream outcome prediction tasks. Both models demonstrate mastery of the pre-training task but neither consistently outperform XGBoost on downstream supervised tasks. Our ablation studies reveal that transfer learning shows limited effectiveness for BERT and achieves marginal success with Labrador. We explore the reasons for the failure of transfer learning and suggest that the data generating process underlying each patient cannot be characterized sufficiently using labs alone, among other factors. We encourage future work to focus on joint modeling of multiple EHR data categories and to include tree-based baselines in their evaluations.
Order Matters: Sequence to sequence for sets
Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.
A Neural Scaling Law from Lottery Ticket Ensembling
Neural scaling laws (NSL) refer to the phenomenon where model performance improves with scale. Sharma & Kaplan analyzed NSL using approximation theory and predict that MSE losses decay as N^{-alpha}, alpha=4/d, where N is the number of model parameters, and d is the intrinsic input dimension. Although their theory works well for some cases (e.g., ReLU networks), we surprisingly find that a simple 1D problem y=x^2 manifests a different scaling law (alpha=1) from their predictions (alpha=4). We opened the neural networks and found that the new scaling law originates from lottery ticket ensembling: a wider network on average has more "lottery tickets", which are ensembled to reduce the variance of outputs. We support the ensembling mechanism by mechanistically interpreting single neural networks, as well as studying them statistically. We attribute the N^{-1} scaling law to the "central limit theorem" of lottery tickets. Finally, we discuss its potential implications for large language models and statistical physics-type theories of learning.
TransICD: Transformer Based Code-wise Attention Model for Explainable ICD Coding
International Classification of Disease (ICD) coding procedure which refers to tagging medical notes with diagnosis codes has been shown to be effective and crucial to the billing system in medical sector. Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors. Moreover, training skilled coders also requires time and human resources. Therefore, automating the ICD code determination process is an important task. With the advancement of artificial intelligence theory and computational hardware, machine learning approach has emerged as a suitable solution to automate this process. In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document. Finally, they are fed to separate dense layers for corresponding code prediction. Furthermore, to handle the imbalance in the code frequency of clinical datasets, we employ a label distribution aware margin (LDAM) loss function. The experimental results on the MIMIC-III dataset show that our proposed model outperforms other baselines by a significant margin. In particular, our best setting achieves a micro-AUC score of 0.923 compared to 0.868 of bidirectional recurrent neural networks. We also show that by using the code-wise attention mechanism, the model can provide more insights about its prediction, and thus it can support clinicians to make reliable decisions. Our code is available online (https://github.com/biplob1ly/TransICD)
PROMISSING: Pruning Missing Values in Neural Networks
While data are the primary fuel for machine learning models, they often suffer from missing values, especially when collected in real-world scenarios. However, many off-the-shelf machine learning models, including artificial neural network models, are unable to handle these missing values directly. Therefore, extra data preprocessing and curation steps, such as data imputation, are inevitable before learning and prediction processes. In this study, we propose a simple and intuitive yet effective method for pruning missing values (PROMISSING) during learning and inference steps in neural networks. In this method, there is no need to remove or impute the missing values; instead, the missing values are treated as a new source of information (representing what we do not know). Our experiments on simulated data, several classification and regression benchmarks, and a multi-modal clinical dataset show that PROMISSING results in similar prediction performance compared to various imputation techniques. In addition, our experiments show models trained using PROMISSING techniques are becoming less decisive in their predictions when facing incomplete samples with many unknowns. This finding hopefully advances machine learning models from being pure predicting machines to more realistic thinkers that can also say "I do not know" when facing incomplete sources of information.
Normalized Loss Functions for Deep Learning with Noisy Labels
Robust loss functions are essential for training accurate deep neural networks (DNNs) in the presence of noisy (incorrect) labels. It has been shown that the commonly used Cross Entropy (CE) loss is not robust to noisy labels. Whilst new loss functions have been designed, they are only partially robust. In this paper, we theoretically show by applying a simple normalization that: any loss can be made robust to noisy labels. However, in practice, simply being robust is not sufficient for a loss function to train accurate DNNs. By investigating several robust loss functions, we find that they suffer from a problem of underfitting. To address this, we propose a framework to build robust loss functions called Active Passive Loss (APL). APL combines two robust loss functions that mutually boost each other. Experiments on benchmark datasets demonstrate that the family of new loss functions created by our APL framework can consistently outperform state-of-the-art methods by large margins, especially under large noise rates such as 60% or 80% incorrect labels.
Comparative Study on the Performance of Categorical Variable Encoders in Classification and Regression Tasks
Categorical variables often appear in datasets for classification and regression tasks, and they need to be encoded into numerical values before training. Since many encoders have been developed and can significantly impact performance, choosing the appropriate encoder for a task becomes a time-consuming yet important practical issue. This study broadly classifies machine learning models into three categories: 1) ATI models that implicitly perform affine transformations on inputs, such as multi-layer perceptron neural network; 2) Tree-based models that are based on decision trees, such as random forest; and 3) the rest, such as kNN. Theoretically, we prove that the one-hot encoder is the best choice for ATI models in the sense that it can mimic any other encoders by learning suitable weights from the data. We also explain why the target encoder and its variants are the most suitable encoders for tree-based models. This study conducted comprehensive computational experiments to evaluate 14 encoders, including one-hot and target encoders, along with eight common machine-learning models on 28 datasets. The computational results agree with our theoretical analysis. The findings in this study shed light on how to select the suitable encoder for data scientists in fields such as fraud detection, disease diagnosis, etc.
Improving extreme weather events detection with light-weight neural networks
To advance automated detection of extreme weather events, which are increasing in frequency and intensity with climate change, we explore modifications to a novel light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data. Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance. We investigate feature engineering, data augmentation, learning rate modifications, alternative loss functions, and architectural changes. In contrast to previous approaches optimizing for intersection over union, we specifically seek to improve recall to penalize under-counting and prioritize identification of tropical cyclones. We report success through the use of weighted loss functions to counter class imbalance for these rare events. We conclude with directions for future research on extreme weather events detection, a crucial task for prediction, mitigation, and equitable adaptation to the impacts of climate change.
One-vs-the-Rest Loss to Focus on Important Samples in Adversarial Training
This paper proposes a new loss function for adversarial training. Since adversarial training has difficulties, e.g., necessity of high model capacity, focusing on important data points by weighting cross-entropy loss has attracted much attention. However, they are vulnerable to sophisticated attacks, e.g., Auto-Attack. This paper experimentally reveals that the cause of their vulnerability is their small margins between logits for the true label and the other labels. Since neural networks classify the data points based on the logits, logit margins should be large enough to avoid flipping the largest logit by the attacks. Importance-aware methods do not increase logit margins of important samples but decrease those of less-important samples compared with cross-entropy loss. To increase logit margins of important samples, we propose switching one-vs-the-rest loss (SOVR), which switches from cross-entropy to one-vs-the-rest loss for important samples that have small logit margins. We prove that one-vs-the-rest loss increases logit margins two times larger than the weighted cross-entropy loss for a simple problem. We experimentally confirm that SOVR increases logit margins of important samples unlike existing methods and achieves better robustness against Auto-Attack than importance-aware methods.
Unsupervised Label Noise Modeling and Loss Correction
Despite being robust to small amounts of label noise, convolutional neural networks trained with stochastic gradient methods have been shown to easily fit random labels. When there are a mixture of correct and mislabelled targets, networks tend to fit the former before the latter. This suggests using a suitable two-component mixture model as an unsupervised generative model of sample loss values during training to allow online estimation of the probability that a sample is mislabelled. Specifically, we propose a beta mixture to estimate this probability and correct the loss by relying on the network prediction (the so-called bootstrapping loss). We further adapt mixup augmentation to drive our approach a step further. Experiments on CIFAR-10/100 and TinyImageNet demonstrate a robustness to label noise that substantially outperforms recent state-of-the-art. Source code is available at https://git.io/fjsvE
SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects
Monocular 3D detectors achieve remarkable performance on cars and smaller objects. However, their performance drops on larger objects, leading to fatal accidents. Some attribute the failures to training data scarcity or their receptive field requirements of large objects. In this paper, we highlight this understudied problem of generalization to large objects. We find that modern frontal detectors struggle to generalize to large objects even on nearly balanced datasets. We argue that the cause of failure is the sensitivity of depth regression losses to noise of larger objects. To bridge this gap, we comprehensively investigate regression and dice losses, examining their robustness under varying error levels and object sizes. We mathematically prove that the dice loss leads to superior noise-robustness and model convergence for large objects compared to regression losses for a simplified case. Leveraging our theoretical insights, we propose SeaBird (Segmentation in Bird's View) as the first step towards generalizing to large objects. SeaBird effectively integrates BEV segmentation on foreground objects for 3D detection, with the segmentation head trained with the dice loss. SeaBird achieves SoTA results on the KITTI-360 leaderboard and improves existing detectors on the nuScenes leaderboard, particularly for large objects. Code and models at https://github.com/abhi1kumar/SeaBird
DASO: Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced Semi-Supervised Learning
The capability of the traditional semi-supervised learning (SSL) methods is far from real-world application due to severely biased pseudo-labels caused by (1) class imbalance and (2) class distribution mismatch between labeled and unlabeled data. This paper addresses such a relatively under-explored problem. First, we propose a general pseudo-labeling framework that class-adaptively blends the semantic pseudo-label from a similarity-based classifier to the linear one from the linear classifier, after making the observation that both types of pseudo-labels have complementary properties in terms of bias. We further introduce a novel semantic alignment loss to establish balanced feature representation to reduce the biased predictions from the classifier. We term the whole framework as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label. We conduct extensive experiments in a wide range of imbalanced benchmarks: CIFAR10/100-LT, STL10-LT, and large-scale long-tailed Semi-Aves with open-set class, and demonstrate that, the proposed DASO framework reliably improves SSL learners with unlabeled data especially when both (1) class imbalance and (2) distribution mismatch dominate.
MixBag: Bag-Level Data Augmentation for Learning from Label Proportions
Learning from label proportions (LLP) is a promising weakly supervised learning problem. In LLP, a set of instances (bag) has label proportions, but no instance-level labels are given. LLP aims to train an instance-level classifier by using the label proportions of the bag. In this paper, we propose a bag-level data augmentation method for LLP called MixBag, based on the key observation from our preliminary experiments; that the instance-level classification accuracy improves as the number of labeled bags increases even though the total number of instances is fixed. We also propose a confidence interval loss designed based on statistical theory to use the augmented bags effectively. To the best of our knowledge, this is the first attempt to propose bag-level data augmentation for LLP. The advantage of MixBag is that it can be applied to instance-level data augmentation techniques and any LLP method that uses the proportion loss. Experimental results demonstrate this advantage and the effectiveness of our method.
SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation
With evolving data regulations, machine unlearning (MU) has become an important tool for fostering trust and safety in today's AI models. However, existing MU methods focusing on data and/or weight perspectives often suffer limitations in unlearning accuracy, stability, and cross-domain applicability. To address these challenges, we introduce the concept of 'weight saliency' for MU, drawing parallels with input saliency in model explanation. This innovation directs MU's attention toward specific model weights rather than the entire model, improving effectiveness and efficiency. The resultant method that we call saliency unlearning (SalUn) narrows the performance gap with 'exact' unlearning (model retraining from scratch after removing the forgetting data points). To the best of our knowledge, SalUn is the first principled MU approach that can effectively erase the influence of forgetting data, classes, or concepts in both image classification and generation tasks. As highlighted below, For example, SalUn yields a stability advantage in high-variance random data forgetting, e.g., with a 0.2% gap compared to exact unlearning on the CIFAR-10 dataset. Moreover, in preventing conditional diffusion models from generating harmful images, SalUn achieves nearly 100% unlearning accuracy, outperforming current state-of-the-art baselines like Erased Stable Diffusion and Forget-Me-Not. Codes are available at https://github.com/OPTML-Group/Unlearn-Saliency. (WARNING: This paper contains model outputs that may be offensive in nature.)
Trap of Feature Diversity in the Learning of MLPs
In this paper, we focus on a typical two-phase phenomenon in the learning of multi-layer perceptrons (MLPs), and we aim to explain the reason for the decrease of feature diversity in the first phase. Specifically, people find that, in the training of MLPs, the training loss does not decrease significantly until the second phase. To this end, we further explore the reason why the diversity of features over different samples keeps decreasing in the first phase, which hurts the optimization of MLPs. We explain such a phenomenon in terms of the learning dynamics of MLPs. Furthermore, we theoretically explain why four typical operations can alleviate the decrease of the feature diversity.
DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations
Existing person re-identification models often have low generalizability, which is mostly due to limited availability of large-scale labeled data in training. However, labeling large-scale training data is very expensive and time-consuming, while large-scale synthetic dataset shows promising value in learning generalizable person re-identification models. Therefore, in this paper a novel and practical person re-identification task is proposed,i.e. how to use labeled synthetic dataset and unlabeled real-world dataset to train a universal model. In this way, human annotations are no longer required, and it is scalable to large and diverse real-world datasets. To address the task, we introduce a framework with high generalizability, namely DomainMix. Specifically, the proposed method firstly clusters the unlabeled real-world images and selects the reliable clusters. During training, to address the large domain gap between two domains, a domain-invariant feature learning method is proposed, which introduces a new loss,i.e. domain balance loss, to conduct an adversarial learning between domain-invariant feature learning and domain discrimination, and meanwhile learns a discriminative feature for person re-identification. This way, the domain gap between synthetic and real-world data is much reduced, and the learned feature is generalizable thanks to the large-scale and diverse training data. Experimental results show that the proposed annotation-free method is more or less comparable to the counterpart trained with full human annotations, which is quite promising. In addition, it achieves the current state of the art on several person re-identification datasets under direct cross-dataset evaluation.
Rethinking Nearest Neighbors for Visual Classification
Neural network classifiers have become the de-facto choice for current "pre-train then fine-tune" paradigms of visual classification. In this paper, we investigate k-Nearest-Neighbor (k-NN) classifiers, a classical model-free learning method from the pre-deep learning era, as an augmentation to modern neural network based approaches. As a lazy learning method, k-NN simply aggregates the distance between the test image and top-k neighbors in a training set. We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps: (1) Leverage k-NN predicted probabilities as indications for easy vs. hard examples during training. (2) Linearly interpolate the k-NN predicted distribution with that of the augmented classifier. Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration with additional insights: (1) k-NN achieves competitive results, sometimes even outperforming a standard linear classifier. (2) Incorporating k-NN is especially beneficial for tasks where parametric classifiers perform poorly and / or in low-data regimes. We hope these discoveries will encourage people to rethink the role of pre-deep learning, classical methods in computer vision. Our code is available at: https://github.com/KMnP/nn-revisit.
Backward Compatibility During Data Updates by Weight Interpolation
Backward compatibility of model predictions is a desired property when updating a machine learning driven application. It allows to seamlessly improve the underlying model without introducing regression bugs. In classification tasks these bugs occur in the form of negative flips. This means an instance that was correctly classified by the old model is now classified incorrectly by the updated model. This has direct negative impact on the user experience of such systems e.g. a frequently used voice assistant query is suddenly misclassified. A common reason to update the model is when new training data becomes available and needs to be incorporated. Simply retraining the model with the updated data introduces the unwanted negative flips. We study the problem of regression during data updates and propose Backward Compatible Weight Interpolation (BCWI). This method interpolates between the weights of the old and new model and we show in extensive experiments that it reduces negative flips without sacrificing the improved accuracy of the new model. BCWI is straight forward to implement and does not increase inference cost. We also explore the use of importance weighting during interpolation and averaging the weights of multiple new models in order to further reduce negative flips.