- 75 Languages, 1 Model: Parsing Universal Dependencies Universally We present UDify, a multilingual multi-task model capable of accurately predicting universal part-of-speech, morphological features, lemmas, and dependency trees simultaneously for all 124 Universal Dependencies treebanks across 75 languages. By leveraging a multilingual BERT self-attention model pretrained on 104 languages, we found that fine-tuning it on all datasets concatenated together with simple softmax classifiers for each UD task can result in state-of-the-art UPOS, UFeats, Lemmas, UAS, and LAS scores, without requiring any recurrent or language-specific components. We evaluate UDify for multilingual learning, showing that low-resource languages benefit the most from cross-linguistic annotations. We also evaluate for zero-shot learning, with results suggesting that multilingual training provides strong UD predictions even for languages that neither UDify nor BERT have ever been trained on. Code for UDify is available at https://github.com/hyperparticle/udify. 2 authors · Apr 3, 2019
1 MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank Despite the success of the Universal Dependencies (UD) project exemplified by its impressive language breadth, there is still a lack in `within-language breadth': most treebanks focus on standard languages. Even for German, the language with the most annotations in UD, so far no treebank exists for one of its language varieties spoken by over 10M people: Bavarian. To contribute to closing this gap, we present the first multi-dialect Bavarian treebank (MaiBaam) manually annotated with part-of-speech and syntactic dependency information in UD, covering multiple text genres (wiki, fiction, grammar examples, social, non-fiction). We highlight the morphosyntactic differences between the closely-related Bavarian and German and showcase the rich variability of speakers' orthographies. Our corpus includes 15k tokens, covering dialects from all Bavarian-speaking areas spanning three countries. We provide baseline parsing and POS tagging results, which are lower than results obtained on German and vary substantially between different graph-based parsers. To support further research on Bavarian syntax, we make our dataset, language-specific guidelines and code publicly available. 5 authors · Mar 15, 2024 1
11 Building Foundations for Natural Language Processing of Historical Turkish: Resources and Models This paper introduces foundational resources and models for natural language processing (NLP) of historical Turkish, a domain that has remained underexplored in computational linguistics. We present the first named entity recognition (NER) dataset, HisTR and the first Universal Dependencies treebank, OTA-BOUN for a historical form of the Turkish language along with transformer-based models trained using these datasets for named entity recognition, dependency parsing, and part-of-speech tagging tasks. Additionally, we introduce Ottoman Text Corpus (OTC), a clean corpus of transliterated historical Turkish texts that spans a wide range of historical periods. Our experimental results show significant improvements in the computational analysis of historical Turkish, achieving promising results in tasks that require understanding of historical linguistic structures. They also highlight existing challenges, such as domain adaptation and language variations across time periods. All of the presented resources and models are made available at https://huggingface.co./bucolin to serve as a benchmark for future progress in historical Turkish NLP. 7 authors · Jan 8 3
- Thai Universal Dependency Treebank Automatic dependency parsing of Thai sentences has been underexplored, as evidenced by the lack of large Thai dependency treebanks with complete dependency structures and the lack of a published systematic evaluation of state-of-the-art models, especially transformer-based parsers. In this work, we address these problems by introducing Thai Universal Dependency Treebank (TUD), a new largest Thai treebank consisting of 3,627 trees annotated in accordance with the Universal Dependencies (UD) framework. We then benchmark dependency parsing models that incorporate pretrained transformers as encoders and train them on Thai-PUD and our TUD. The evaluation results show that most of our models can outperform other models reported in previous papers and provide insight into the optimal choices of components to include in Thai dependency parsers. The new treebank and every model's full prediction generated in our experiment are made available on a GitHub repository for further study. 7 authors · May 13, 2024
- Fine-tuning a Subtle Parsing Distinction Using a Probabilistic Decision Tree: the Case of Postnominal "that" in Noun Complement Clauses vs. Relative Clauses In this paper we investigated two different methods to parse relative and noun complement clauses in English and resorted to distinct tags for their corresponding that as a relative pronoun and as a complementizer. We used an algorithm to relabel a corpus parsed with the GUM Treebank using Universal Dependency. Our second experiment consisted in using TreeTagger, a Probabilistic Decision Tree, to learn the distinction between the two complement and relative uses of postnominal "that". We investigated the effect of the training set size on TreeTagger accuracy and how representative the GUM Treebank files are for the two structures under scrutiny. We discussed some of the linguistic and structural tenets of the learnability of this distinction. 2 authors · Dec 5, 2022
1 Assessment of Pre-Trained Models Across Languages and Grammars We present an approach for assessing how multilingual large language models (LLMs) learn syntax in terms of multi-formalism syntactic structures. We aim to recover constituent and dependency structures by casting parsing as sequence labeling. To do so, we select a few LLMs and study them on 13 diverse UD treebanks for dependency parsing and 10 treebanks for constituent parsing. Our results show that: (i) the framework is consistent across encodings, (ii) pre-trained word vectors do not favor constituency representations of syntax over dependencies, (iii) sub-word tokenization is needed to represent syntax, in contrast to character-based models, and (iv) occurrence of a language in the pretraining data is more important than the amount of task data when recovering syntax from the word vectors. 3 authors · Sep 20, 2023
- UER: An Open-Source Toolkit for Pre-training Models Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets. 10 authors · Sep 12, 2019
- Constructing Code-mixed Universal Dependency Forest for Unbiased Cross-lingual Relation Extraction Latest efforts on cross-lingual relation extraction (XRE) aggressively leverage the language-consistent structural features from the universal dependency (UD) resource, while they may largely suffer from biased transfer (e.g., either target-biased or source-biased) due to the inevitable linguistic disparity between languages. In this work, we investigate an unbiased UD-based XRE transfer by constructing a type of code-mixed UD forest. We first translate the sentence of the source language to the parallel target-side language, for both of which we parse the UD tree respectively. Then, we merge the source-/target-side UD structures as a unified code-mixed UD forest. With such forest features, the gaps of UD-based XRE between the training and predicting phases can be effectively closed. We conduct experiments on the ACE XRE benchmark datasets, where the results demonstrate that the proposed code-mixed UD forests help unbiased UD-based XRE transfer, with which we achieve significant XRE performance gains. 4 authors · May 20, 2023
1 Rethinking Self-Attention: Towards Interpretability in Neural Parsing Attention mechanisms have improved the performance of NLP tasks while allowing models to remain explainable. Self-attention is currently widely used, however interpretability is difficult due to the numerous attention distributions. Recent work has shown that model representations can benefit from label-specific information, while facilitating interpretation of predictions. We introduce the Label Attention Layer: a new form of self-attention where attention heads represent labels. We test our novel layer by running constituency and dependency parsing experiments and show our new model obtains new state-of-the-art results for both tasks on both the Penn Treebank (PTB) and Chinese Treebank. Additionally, our model requires fewer self-attention layers compared to existing work. Finally, we find that the Label Attention heads learn relations between syntactic categories and show pathways to analyze errors. 6 authors · Nov 10, 2019
- Dependency-Guided LSTM-CRF for Named Entity Recognition Dependency tree structures capture long-distance and syntactic relationships between words in a sentence. The syntactic relations (e.g., nominal subject, object) can potentially infer the existence of certain named entities. In addition, the performance of a named entity recognizer could benefit from the long-distance dependencies between the words in dependency trees. In this work, we propose a simple yet effective dependency-guided LSTM-CRF model to encode the complete dependency trees and capture the above properties for the task of named entity recognition (NER). The data statistics show strong correlations between the entity types and dependency relations. We conduct extensive experiments on several standard datasets and demonstrate the effectiveness of the proposed model in improving NER and achieving state-of-the-art performance. Our analysis reveals that the significant improvements mainly result from the dependency relations and long-distance interactions provided by dependency trees. 2 authors · Sep 23, 2019
- Deep Biaffine Attention for Neural Dependency Parsing This paper builds off recent work from Kiperwasser & Goldberg (2016) using neural attention in a simple graph-based dependency parser. We use a larger but more thoroughly regularized parser than other recent BiLSTM-based approaches, with biaffine classifiers to predict arcs and labels. Our parser gets state of the art or near state of the art performance on standard treebanks for six different languages, achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset. This makes it the highest-performing graph-based parser on this benchmark---outperforming Kiperwasser Goldberg (2016) by 1.8% and 2.2%---and comparable to the highest performing transition-based parser (Kuncoro et al., 2016), which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter choices had a significant effect on parsing accuracy, allowing us to achieve large gains over other graph-based approaches. 2 authors · Nov 6, 2016
- Linguistic Dependencies and Statistical Dependence Are pairs of words that tend to occur together also likely to stand in a linguistic dependency? This empirical question is motivated by a long history of literature in cognitive science, psycholinguistics, and NLP. In this work we contribute an extensive analysis of the relationship between linguistic dependencies and statistical dependence between words. Improving on previous work, we introduce the use of large pretrained language models to compute contextualized estimates of the pointwise mutual information between words (CPMI). For multiple models and languages, we extract dependency trees which maximize CPMI, and compare to gold standard linguistic dependencies. Overall, we find that CPMI dependencies achieve an unlabelled undirected attachment score of at most approx 0.5. While far above chance, and consistently above a non-contextualized PMI baseline, this score is generally comparable to a simple baseline formed by connecting adjacent words. We analyze which kinds of linguistic dependencies are best captured in CPMI dependencies, and also find marked differences between the estimates of the large pretrained language models, illustrating how their different training schemes affect the type of dependencies they capture. 4 authors · Apr 17, 2021
- Efficient Dependency-Guided Named Entity Recognition Named entity recognition (NER), which focuses on the extraction of semantically meaningful named entities and their semantic classes from text, serves as an indispensable component for several down-stream natural language processing (NLP) tasks such as relation extraction and event extraction. Dependency trees, on the other hand, also convey crucial semantic-level information. It has been shown previously that such information can be used to improve the performance of NER (Sasano and Kurohashi 2008, Ling and Weld 2012). In this work, we investigate on how to better utilize the structured information conveyed by dependency trees to improve the performance of NER. Specifically, unlike existing approaches which only exploit dependency information for designing local features, we show that certain global structured information of the dependency trees can be exploited when building NER models where such information can provide guided learning and inference. Through extensive experiments, we show that our proposed novel dependency-guided NER model performs competitively with models based on conventional semi-Markov conditional random fields, while requiring significantly less running time. 3 authors · Oct 19, 2018
7 Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public. 13 authors · Nov 15, 2023 1
- StructFormer: Joint Unsupervised Induction of Dependency and Constituency Structure from Masked Language Modeling There are two major classes of natural language grammar -- the dependency grammar that models one-to-one correspondences between words and the constituency grammar that models the assembly of one or several corresponded words. While previous unsupervised parsing methods mostly focus on only inducing one class of grammars, we introduce a novel model, StructFormer, that can simultaneously induce dependency and constituency structure. To achieve this, we propose a new parsing framework that can jointly generate a constituency tree and dependency graph. Then we integrate the induced dependency relations into the transformer, in a differentiable manner, through a novel dependency-constrained self-attention mechanism. Experimental results show that our model can achieve strong results on unsupervised constituency parsing, unsupervised dependency parsing, and masked language modeling at the same time. 6 authors · Dec 1, 2020
3 Towards Foundation Models for Knowledge Graph Reasoning Foundation models in language and vision have the ability to run inference on any textual and visual inputs thanks to the transferable representations such as a vocabulary of tokens in language. Knowledge graphs (KGs) have different entity and relation vocabularies that generally do not overlap. The key challenge of designing foundation models on KGs is to learn such transferable representations that enable inference on any graph with arbitrary entity and relation vocabularies. In this work, we make a step towards such foundation models and present ULTRA, an approach for learning universal and transferable graph representations. ULTRA builds relational representations as a function conditioned on their interactions. Such a conditioning strategy allows a pre-trained ULTRA model to inductively generalize to any unseen KG with any relation vocabulary and to be fine-tuned on any graph. Conducting link prediction experiments on 57 different KGs, we find that the zero-shot inductive inference performance of a single pre-trained ULTRA model on unseen graphs of various sizes is often on par or better than strong baselines trained on specific graphs. Fine-tuning further boosts the performance. 5 authors · Oct 6, 2023 1
- LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model Universally modeling all typical information extraction tasks (UIE) with one generative language model (GLM) has revealed great potential by the latest study, where various IE predictions are unified into a linearized hierarchical expression under a GLM. Syntactic structure information, a type of effective feature which has been extensively utilized in IE community, should also be beneficial to UIE. In this work, we propose a novel structure-aware GLM, fully unleashing the power of syntactic knowledge for UIE. A heterogeneous structure inductor is explored to unsupervisedly induce rich heterogeneous structural representations by post-training an existing GLM. In particular, a structural broadcaster is devised to compact various latent trees into explicit high-order forests, helping to guide a better generation during decoding. We finally introduce a task-oriented structure fine-tuning mechanism, further adjusting the learned structures to most coincide with the end-task's need. Over 12 IE benchmarks across 7 tasks our system shows significant improvements over the baseline UIE system. Further in-depth analyses show that our GLM learns rich task-adaptive structural bias that greatly resolves the UIE crux, the long-range dependence issue and boundary identifying. Source codes are open at https://github.com/ChocoWu/LasUIE. 9 authors · Apr 13, 2023
- Yara Parser: A Fast and Accurate Dependency Parser Dependency parsers are among the most crucial tools in natural language processing as they have many important applications in downstream tasks such as information retrieval, machine translation and knowledge acquisition. We introduce the Yara Parser, a fast and accurate open-source dependency parser based on the arc-eager algorithm and beam search. It achieves an unlabeled accuracy of 93.32 on the standard WSJ test set which ranks it among the top dependency parsers. At its fastest, Yara can parse about 4000 sentences per second when in greedy mode (1 beam). When optimizing for accuracy (using 64 beams and Brown cluster features), Yara can parse 45 sentences per second. The parser can be trained on any syntactic dependency treebank and different options are provided in order to make it more flexible and tunable for specific tasks. It is released with the Apache version 2.0 license and can be used for both commercial and academic purposes. The parser can be found at https://github.com/yahoo/YaraParser. 2 authors · Mar 23, 2015
- NorNE: Annotating Named Entities for Norwegian This paper presents NorNE, a manually annotated corpus of named entities which extends the annotation of the existing Norwegian Dependency Treebank. Comprising both of the official standards of written Norwegian (Bokm{\aa}l and Nynorsk), the corpus contains around 600,000 tokens and annotates a rich set of entity types including persons, organizations, locations, geo-political entities, products, and events, in addition to a class corresponding to nominals derived from names. We here present details on the annotation effort, guidelines, inter-annotator agreement and an experimental analysis of the corpus using a neural sequence labeling architecture. 5 authors · Nov 27, 2019
1 Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional Networks and Syntax-based Regulation Aspect-based Sentiment Analysis (ABSA) seeks to predict the sentiment polarity of a sentence toward a specific aspect. Recently, it has been shown that dependency trees can be integrated into deep learning models to produce the state-of-the-art performance for ABSA. However, these models tend to compute the hidden/representation vectors without considering the aspect terms and fail to benefit from the overall contextual importance scores of the words that can be obtained from the dependency tree for ABSA. In this work, we propose a novel graph-based deep learning model to overcome these two issues of the prior work on ABSA. In our model, gate vectors are generated from the representation vectors of the aspect terms to customize the hidden vectors of the graph-based models toward the aspect terms. In addition, we propose a mechanism to obtain the importance scores for each word in the sentences based on the dependency trees that are then injected into the model to improve the representation vectors for ABSA. The proposed model achieves the state-of-the-art performance on three benchmark datasets. 6 authors · Oct 26, 2020
- UniPredict: Large Language Models are Universal Tabular Classifiers Tabular data prediction is a fundamental machine learning task for many applications. Existing methods predominantly employ discriminative modeling and operate under the assumption of a fixed target column, necessitating re-training for every new predictive task. Inspired by the generative power of large language models (LLMs), this paper exploits the idea of building universal tabular data predictors based on generative modeling, namely UniPredict. Here, we demonstrate the scalability of an LLM to extensive tabular datasets, enabling it to comprehend diverse tabular inputs and predict target variables following the provided instructions. Specifically, we train a single LLM on an aggregation of 169 tabular datasets with diverse targets and compare its performance against baselines that are trained on each dataset separately. We observe this versatile UniPredict model demonstrates an advantage over other models, ranging from 5.4% to 13.4%, when compared with the best tree-boosting baseline and the best neural network baseline, respectively. We further test UniPredict in few-shot learning settings on another 62 tabular datasets. Our method achieves strong performance in quickly adapting to new tasks. In low-resource few-shot setup, we observed a 100%+ performance advantage compared with XGBoost, and significant margin over all baselines. We envision that UniPredict sheds light on developing a universal tabular data prediction system that learns from data at scale and serves a wide range of prediction tasks. 3 authors · Oct 4, 2023
- Dependency-based Hybrid Trees for Semantic Parsing We propose a novel dependency-based hybrid tree model for semantic parsing, which converts natural language utterance into machine interpretable meaning representations. Unlike previous state-of-the-art models, the semantic information is interpreted as the latent dependency between the natural language words in our joint representation. Such dependency information can capture the interactions between the semantics and natural language words. We integrate a neural component into our model and propose an efficient dynamic-programming algorithm to perform tractable inference. Through extensive experiments on the standard multilingual GeoQuery dataset with eight languages, we demonstrate that our proposed approach is able to achieve state-of-the-art performance across several languages. Analysis also justifies the effectiveness of using our new dependency-based representation. 2 authors · Aug 31, 2018
- Linguistic Structure Induction from Language Models Linear sequences of words are implicitly represented in our brains by hierarchical structures that organize the composition of words in sentences. Linguists formalize different frameworks to model this hierarchy; two of the most common syntactic frameworks are Constituency and Dependency. Constituency represents sentences as nested groups of phrases, while dependency represents a sentence by assigning relations between its words. Recently, the pursuit of intelligent machines has produced Language Models (LMs) capable of solving many language tasks with a human-level performance. Many studies now question whether LMs implicitly represent syntactic hierarchies. This thesis focuses on producing constituency and dependency structures from LMs in an unsupervised setting. I review the critical methods in this field and highlight a line of work that utilizes a numerical representation for binary constituency trees (Syntactic Distance). I present a detailed study on StructFormer (SF) (Shen et al., 2021), which retrofits a transformer encoder architecture with a parser network to produce constituency and dependency structures. I present six experiments to analyze and address this field's challenges; experiments include investigating the effect of repositioning the parser network within the SF architecture, evaluating subword-based induced trees, and benchmarking the models developed in the thesis experiments on linguistic tasks. Models benchmarking is performed by participating in the BabyLM challenge, published at CoNLL 2023 (Momen et al., 2023). The results of this thesis encourage further development in the direction of retrofitting transformer-based models to induce syntactic structures, supported by the acceptable performance of SF in different experimental settings and the observed limitations that require innovative solutions to advance the state of syntactic structure induction. 1 authors · Mar 11, 2024
3 Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch. 6 authors · Jan 9, 2019
- Unified Structure Generation for Universal Information Extraction Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE. 8 authors · Mar 23, 2022
- ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 We present the winning entry to the Multilingual Lexical Normalization (MultiLexNorm) shared task at W-NUT 2021 (van der Goot et al., 2021a), which evaluates lexical-normalization systems on 12 social media datasets in 11 languages. We base our solution on a pre-trained byte-level language model, ByT5 (Xue et al., 2021a), which we further pre-train on synthetic data and then fine-tune on authentic normalization data. Our system achieves the best performance by a wide margin in intrinsic evaluation, and also the best performance in extrinsic evaluation through dependency parsing. The source code is released at https://github.com/ufal/multilexnorm2021 and the fine-tuned models at https://huggingface.co./ufal. 2 authors · Oct 28, 2021
- LatinCy: Synthetic Trained Pipelines for Latin NLP This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work. 1 authors · May 7, 2023
- Selection Bias Induced Spurious Correlations in Large Language Models In this work we show how large language models (LLMs) can learn statistical dependencies between otherwise unconditionally independent variables due to dataset selection bias. To demonstrate the effect, we developed a masked gender task that can be applied to BERT-family models to reveal spurious correlations between predicted gender pronouns and a variety of seemingly gender-neutral variables like date and location, on pre-trained (unmodified) BERT and RoBERTa large models. Finally, we provide an online demo, inviting readers to experiment further. 1 authors · Jul 18, 2022
- Holistic Exploration on Universal Decompositional Semantic Parsing: Architecture, Data Augmentation, and LLM Paradigm In this paper, we conduct a holistic exploration of the Universal Decompositional Semantic (UDS) Parsing. We first introduce a cascade model for UDS parsing that decomposes the complex parsing task into semantically appropriate subtasks. Our approach outperforms the prior models, while significantly reducing inference time. We also incorporate syntactic information and further optimized the architecture. Besides, different ways for data augmentation are explored, which further improve the UDS Parsing. Lastly, we conduct experiments to investigate the efficacy of ChatGPT in handling the UDS task, revealing that it excels in attribute parsing but struggles in relation parsing, and using ChatGPT for data augmentation yields suboptimal results. Our code is available at https://github.com/hexuandeng/HExp4UDS. 5 authors · Jul 25, 2023
1 Decomposed Prompting: Unveiling Multilingual Linguistic Structure Knowledge in English-Centric Large Language Models Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge. 7 authors · Feb 28, 2024
1 Language Models are Universal Embedders In the large language model (LLM) revolution, embedding is a key component of various systems. For example, it is used to retrieve knowledge or memories for LLMs, to build content moderation filters, etc. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is desirable to build a unified embedding model rather than dedicated ones for each scenario. In this work, we make an initial step towards this goal, demonstrating that multiple languages (both natural and programming) pre-trained transformer decoders can embed universally when finetuned on limited English data. We provide a comprehensive practice with thorough evaluations. On English MTEB, our models achieve competitive performance on different embedding tasks by minimal training data. On other benchmarks, such as multilingual classification and code search, our models (without any supervision) perform comparably to, or even surpass heavily supervised baselines and/or APIs. These results provide evidence of a promising path towards building powerful unified embedders that can be applied across tasks and languages. 7 authors · Oct 12, 2023
- Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings. 6 authors · Oct 13, 2021
- Pretrained Language Models for Sequential Sentence Classification As a step toward better document-level understanding, we explore classification of a sequence of sentences into their corresponding categories, a task that requires understanding sentences in context of the document. Recent successful models for this task have used hierarchical models to contextualize sentence representations, and Conditional Random Fields (CRFs) to incorporate dependencies between subsequent labels. In this work, we show that pretrained language models, BERT (Devlin et al., 2018) in particular, can be used for this task to capture contextual dependencies without the need for hierarchical encoding nor a CRF. Specifically, we construct a joint sentence representation that allows BERT Transformer layers to directly utilize contextual information from all words in all sentences. Our approach achieves state-of-the-art results on four datasets, including a new dataset of structured scientific abstracts. 5 authors · Sep 9, 2019
- Strongly Incremental Constituency Parsing with Graph Neural Networks Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental: humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser. 2 authors · Oct 27, 2020
- SpaDeLeF: A Dataset for Hierarchical Classification of Lexical Functions for Collocations in Spanish In natural language processing (NLP), lexical function is a concept to unambiguously represent semantic and syntactic features of words and phrases in text first crafted in the Meaning-Text Theory. Hierarchical classification of lexical functions involves organizing these features into a tree-like hierarchy of categories or labels. This is a challenging task as it requires a good understanding of the context and the relationships among words and phrases in text. It also needs large amounts of labeled data to train language models effectively. In this paper, we present a dataset of most frequent Spanish verb-noun collocations and sentences where they occur, each collocation is assigned to one of 37 lexical functions defined as classes for a hierarchical classification task. Each class represents a relation between the noun and the verb in a collocation involving their semantic and syntactic features. We combine the classes in a tree-based structure, and introduce classification objectives for each level of the structure. The dataset was created by dependency tree parsing and matching of the phrases in Spanish news. We provide baselines and data splits for each objective. 3 authors · Nov 7, 2023
- Ensemble-Based Unsupervised Discontinuous Constituency Parsing by Tree Averaging We address unsupervised discontinuous constituency parsing, where we observe a high variance in the performance of the only previous model. We propose to build an ensemble of different runs of the existing discontinuous parser by averaging the predicted trees, to stabilize and boost performance. To begin with, we provide comprehensive computational complexity analysis (in terms of P and NP-complete) for tree averaging under different setups of binarity and continuity. We then develop an efficient exact algorithm to tackle the task, which runs in a reasonable time for all samples in our experiments. Results on three datasets show our method outperforms all baselines in all metrics; we also provide in-depth analyses of our approach. 3 authors · Feb 29, 2024
- Towards Universal Image Embeddings: A Large-Scale Dataset and Challenge for Generic Image Representations Fine-grained and instance-level recognition methods are commonly trained and evaluated on specific domains, in a model per domain scenario. Such an approach, however, is impractical in real large-scale applications. In this work, we address the problem of universal image embedding, where a single universal model is trained and used in multiple domains. First, we leverage existing domain-specific datasets to carefully construct a new large-scale public benchmark for the evaluation of universal image embeddings, with 241k query images, 1.4M index images and 2.8M training images across 8 different domains and 349k classes. We define suitable metrics, training and evaluation protocols to foster future research in this area. Second, we provide a comprehensive experimental evaluation on the new dataset, demonstrating that existing approaches and simplistic extensions lead to worse performance than an assembly of models trained for each domain separately. Finally, we conducted a public research competition on this topic, leveraging industrial datasets, which attracted the participation of more than 1k teams worldwide. This exercise generated many interesting research ideas and findings which we present in detail. Project webpage: https://cmp.felk.cvut.cz/univ_emb/ 10 authors · Sep 4, 2023
- A Second Wave of UD Hebrew Treebanking and Cross-Domain Parsing Foundational Hebrew NLP tasks such as segmentation, tagging and parsing, have relied to date on various versions of the Hebrew Treebank (HTB, Sima'an et al. 2001). However, the data in HTB, a single-source newswire corpus, is now over 30 years old, and does not cover many aspects of contemporary Hebrew on the web. This paper presents a new, freely available UD treebank of Hebrew stratified from a range of topics selected from Hebrew Wikipedia. In addition to introducing the corpus and evaluating the quality of its annotations, we deploy automatic validation tools based on grew (Guillaume, 2021), and conduct the first cross domain parsing experiments in Hebrew. We obtain new state-of-the-art (SOTA) results on UD NLP tasks, using a combination of the latest language modelling and some incremental improvements to existing transformer based approaches. We also release a new version of the UD HTB matching annotation scheme updates from our new corpus. 4 authors · Oct 14, 2022
- Discovering Useful Sentence Representations from Large Pretrained Language Models Despite the extensive success of pretrained language models as encoders for building NLP systems, they haven't seen prominence as decoders for sequence generation tasks. We explore the question of whether these models can be adapted to be used as universal decoders. To be considered "universal," a decoder must have an implicit representation for any target sentence s, such that it can recover that sentence exactly when conditioned on its representation. For large transformer-based language models trained on vast amounts of English text, we investigate whether such representations can be easily discovered using standard optimization methods. We present and compare three representation injection techniques for transformer-based models and three accompanying methods which map sentences to and from this representation space. Experiments show that not only do representations exist for sentences from a variety of genres. More importantly, without needing complex optimization algorithms, our methods recover these sentences almost perfectly without fine-tuning the underlying language model at all. 2 authors · Aug 20, 2020
2 Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts. In this study, we propose a data mining framework ProLong that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the Dependency Strength between text segments in a given document. Then we refine this metric based on the Dependency Distance of these segments to incorporate spatial relationships across long-contexts. Final results are calibrated with a Dependency Specificity metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities. 6 authors · May 28, 2024 1
2 Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality. 6 authors · Oct 9, 2024
- Constraining Linear-chain CRFs to Regular Languages A major challenge in structured prediction is to represent the interdependencies within output structures. When outputs are structured as sequences, linear-chain conditional random fields (CRFs) are a widely used model class which can learn local dependencies in the output. However, the CRF's Markov assumption makes it impossible for CRFs to represent distributions with nonlocal dependencies, and standard CRFs are unable to respect nonlocal constraints of the data (such as global arity constraints on output labels). We present a generalization of CRFs that can enforce a broad class of constraints, including nonlocal ones, by specifying the space of possible output structures as a regular language L. The resulting regular-constrained CRF (RegCCRF) has the same formal properties as a standard CRF, but assigns zero probability to all label sequences not in L. Notably, RegCCRFs can incorporate their constraints during training, while related models only enforce constraints during decoding. We prove that constrained training is never worse than constrained decoding, and show empirically that it can be substantially better in practice. Additionally, we demonstrate a practical benefit on downstream tasks by incorporating a RegCCRF into a deep neural model for semantic role labeling, exceeding state-of-the-art results on a standard dataset. 3 authors · Jun 14, 2021
- BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings Sentence embeddings are crucial in measuring semantic similarity. Most recent studies employed large language models (LLMs) to learn sentence embeddings. Existing LLMs mainly adopted autoregressive architecture without explicit backward dependency modeling. Therefore, we examined the effects of backward dependencies in LLMs for semantic similarity measurements. Concretely, we propose a novel model: backward dependency enhanced large language model (BeLLM). It learns sentence embeddings via transforming specific attention layers from uni- to bi-directional. We extensively experiment across various semantic textual similarity (STS) tasks and downstream applications. BeLLM achieves state-of-the-art performance in varying scenarios. It shows that auto-regressive LLMs benefit from backward dependencies for sentence embeddings. 2 authors · Nov 9, 2023
- Towards Better Dynamic Graph Learning: New Architecture and Unified Library We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (1) a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their historical sequences; (2) a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing exhaustive experiments on thirteen datasets for dynamic link prediction and dynamic node classification tasks, we find that DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating its effectiveness in capturing nodes' correlations and long-term temporal dependencies. Moreover, some results of baselines are inconsistent with previous reports, which may be caused by their diverse but less rigorous implementations, showing the importance of DyGLib. All the used resources are publicly available at https://github.com/yule-BUAA/DyGLib. 4 authors · Mar 23, 2023
- How Graph Structure and Label Dependencies Contribute to Node Classification in a Large Network of Documents We introduce a new dataset named WikiVitals which contains a large graph of 48k mutually referred Wikipedia articles classified into 32 categories and connected by 2.3M edges. Our aim is to rigorously evaluate the contributions of three distinct sources of information to the label prediction in a semi-supervised node classification setting, namely the content of the articles, their connections with each other and the correlations among their labels. We perform this evaluation using a Graph Markov Neural Network which provides a theoretically principled model for this task and we conduct a detailed evaluation of the contributions of each sources of information using a clear separation of model selection and model assessment. One interesting observation is that including the effect of label dependencies is more relevant for sparse train sets than it is for dense train sets. 2 authors · Apr 3, 2023
- Evaluating the Impact of Source Code Parsers on ML4SE Models As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599. 4 authors · Jun 17, 2022
1 Transfer to a Low-Resource Language via Close Relatives: The Case Study on Faroese Multilingual language models have pushed state-of-the-art in cross-lingual NLP transfer. The majority of zero-shot cross-lingual transfer, however, use one and the same massively multilingual transformer (e.g., mBERT or XLM-R) to transfer to all target languages, irrespective of their typological, etymological, and phylogenetic relations to other languages. In particular, readily available data and models of resource-rich sibling languages are often ignored. In this work, we empirically show, in a case study for Faroese -- a low-resource language from a high-resource language family -- that by leveraging the phylogenetic information and departing from the 'one-size-fits-all' paradigm, one can improve cross-lingual transfer to low-resource languages. In particular, we leverage abundant resources of other Scandinavian languages (i.e., Danish, Norwegian, Swedish, and Icelandic) for the benefit of Faroese. Our evaluation results show that we can substantially improve the transfer performance to Faroese by exploiting data and models of closely-related high-resource languages. Further, we release a new web corpus of Faroese and Faroese datasets for named entity recognition (NER), semantic text similarity (STS), and new language models trained on all Scandinavian languages. 4 authors · Apr 18, 2023
22 UniversalNER: Targeted Distillation from Large Language Models for Open Named Entity Recognition Large language models (LLMs) have demonstrated remarkable generalizability, such as understanding arbitrary entities and relations. Instruction tuning has proven effective for distilling LLMs into more cost-efficient models such as Alpaca and Vicuna. Yet such student models still trail the original LLMs by large margins in downstream applications. In this paper, we explore targeted distillation with mission-focused instruction tuning to train student models that can excel in a broad application class such as open information extraction. Using named entity recognition (NER) for case study, we show how ChatGPT can be distilled into much smaller UniversalNER models for open NER. For evaluation, we assemble the largest NER benchmark to date, comprising 43 datasets across 9 diverse domains such as biomedicine, programming, social media, law, finance. Without using any direct supervision, UniversalNER attains remarkable NER accuracy across tens of thousands of entity types, outperforming general instruction-tuned models such as Alpaca and Vicuna by over 30 absolute F1 points in average. With a tiny fraction of parameters, UniversalNER not only acquires ChatGPT's capability in recognizing arbitrary entity types, but also outperforms its NER accuracy by 7-9 absolute F1 points in average. Remarkably, UniversalNER even outperforms by a large margin state-of-the-art multi-task instruction-tuned systems such as InstructUIE, which uses supervised NER examples. We also conduct thorough ablation studies to assess the impact of various components in our distillation approach. We will release the distillation recipe, data, and UniversalNER models to facilitate future research on targeted distillation. 5 authors · Aug 6, 2023 2
- Dependency-Aware Semi-Structured Sparsity of GLU Variants in Large Language Models The rapid advancement in Large Language Models (LLMs) has markedly enhanced the capabilities of language understanding and generation. However, the substantial model size poses hardware challenges, affecting both memory size for serving and inference latency for token generation. To address those challenges, we propose Dependency-aware Semi-structured Sparsity (DaSS), a novel method for the recent prevalent SwiGLU-based LLMs pruning. Our approach incorporates structural dependency into the weight magnitude-based unstructured pruning. We introduce an MLP-specific pruning metric that evaluates the importance of each weight by jointly considering its magnitude and its corresponding MLP intermediate activation norms. DaSS facilitates a balance between the adaptability offered by unstructured pruning and the structural consistency inherent in dependency-based structured pruning. Empirical evaluations on Mistral and LLaMA2 model families demonstrate that DaSS not only outperforms both SparseGPT and Wanda in achieving hardware-friendly N:M sparsity patterns but also maintains the computational efficiency of Wanda. 3 authors · May 3, 2024
- UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model Significant advancements has recently been achieved in the field of multi-modal large language models (MLLMs), demonstrating their remarkable capabilities in understanding and reasoning across diverse tasks. However, these models are often trained for specific tasks and rely on task-specific input-output formats, limiting their applicability to a broader range of tasks. This raises a fundamental question: Can we develop a unified approach to represent and handle different multi-modal tasks to maximize the generalizability of MLLMs? In this paper, we propose UnifiedMLLM, a comprehensive model designed to represent various tasks using a unified representation. Our model exhibits strong capabilities in comprehending the implicit intent of user instructions and preforming reasoning. In addition to generating textual responses, our model also outputs task tokens and grounding tokens, serving as indicators of task types and task granularity. These outputs are subsequently routed through the task router and directed to specific expert models for task completion. To train our model, we construct a task-specific dataset and an 100k multi-task dataset encompassing complex scenarios. Employing a three-stage training strategy, we equip our model with robust reasoning and task processing capabilities while preserving its generalization capacity and knowledge reservoir. Extensive experiments showcase the impressive performance of our unified representation approach across various tasks, surpassing existing methodologies. Furthermore, our approach exhibits exceptional scalability and generality. Our code, model, and dataset will be available at https://github.com/lzw-lzw/UnifiedMLLM. 10 authors · Aug 5, 2024
- Investigating Failures to Generalize for Coreference Resolution Models Coreference resolution models are often evaluated on multiple datasets. Datasets vary, however, in how coreference is realized -- i.e., how the theoretical concept of coreference is operationalized in the dataset -- due to factors such as the choice of corpora and annotation guidelines. We investigate the extent to which errors of current coreference resolution models are associated with existing differences in operationalization across datasets (OntoNotes, PreCo, and Winogrande). Specifically, we distinguish between and break down model performance into categories corresponding to several types of coreference, including coreferring generic mentions, compound modifiers, and copula predicates, among others. This break down helps us investigate how state-of-the-art models might vary in their ability to generalize across different coreference types. In our experiments, for example, models trained on OntoNotes perform poorly on generic mentions and copula predicates in PreCo. Our findings help calibrate expectations of current coreference resolution models; and, future work can explicitly account for those types of coreference that are empirically associated with poor generalization when developing models. 5 authors · Mar 16, 2023
- Learning to Generate Reviews and Discovering Sentiment We explore the properties of byte-level recurrent language models. When given sufficient amounts of capacity, training data, and compute time, the representations learned by these models include disentangled features corresponding to high-level concepts. Specifically, we find a single unit which performs sentiment analysis. These representations, learned in an unsupervised manner, achieve state of the art on the binary subset of the Stanford Sentiment Treebank. They are also very data efficient. When using only a handful of labeled examples, our approach matches the performance of strong baselines trained on full datasets. We also demonstrate the sentiment unit has a direct influence on the generative process of the model. Simply fixing its value to be positive or negative generates samples with the corresponding positive or negative sentiment. 3 authors · Apr 5, 2017
2 UniCoder: Scaling Code Large Language Model via Universal Code Intermediate reasoning or acting steps have successfully improved large language models (LLMs) for handling various downstream natural language processing (NLP) tasks. When applying LLMs for code generation, recent works mainly focus on directing the models to articulate intermediate natural-language reasoning steps, as in chain-of-thought (CoT) prompting, and then output code with the natural language or other structured intermediate steps. However, such output is not suitable for code translation or generation tasks since the standard CoT has different logical structures and forms of expression with the code. In this work, we introduce the universal code (UniCode) as the intermediate representation. It is a description of algorithm steps using a mix of conventions of programming languages, such as assignment operator, conditional operator, and loop. Hence, we collect an instruction dataset UniCoder-Instruct to train our model UniCoder on multi-task learning objectives. UniCoder-Instruct comprises natural-language questions, code solutions, and the corresponding universal code. The alignment between the intermediate universal code representation and the final code solution significantly improves the quality of the generated code. The experimental results demonstrate that UniCoder with the universal code significantly outperforms the previous prompting methods by a large margin, showcasing the effectiveness of the structural clues in pseudo-code. 9 authors · Jun 24, 2024
- GenericsKB: A Knowledge Base of Generic Statements We present a new resource for the NLP community, namely a large (3.5M+ sentence) knowledge base of *generic statements*, e.g., "Trees remove carbon dioxide from the atmosphere", collected from multiple corpora. This is the first large resource to contain *naturally occurring* generic sentences, as opposed to extracted or crowdsourced triples, and thus is rich in high-quality, general, semantically complete statements. All GenericsKB sentences are annotated with their topical term, surrounding context (sentences), and a (learned) confidence. We also release GenericsKB-Best (1M+ sentences), containing the best-quality generics in GenericsKB augmented with selected, synthesized generics from WordNet and ConceptNet. In tests on two existing datasets requiring multihop reasoning (OBQA and QASC), we find using GenericsKB can result in higher scores and better explanations than using a much larger corpus. This demonstrates that GenericsKB can be a useful resource for NLP applications, as well as providing data for linguistic studies of generics and their semantics. GenericsKB is available at https://allenai.org/data/genericskb. 3 authors · May 1, 2020
- Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets 7 authors · Sep 10, 2019
- Lbl2Vec: An Embedding-Based Approach for Unsupervised Document Retrieval on Predefined Topics In this paper, we consider the task of retrieving documents with predefined topics from an unlabeled document dataset using an unsupervised approach. The proposed unsupervised approach requires only a small number of keywords describing the respective topics and no labeled document. Existing approaches either heavily relied on a large amount of additionally encoded world knowledge or on term-document frequencies. Contrariwise, we introduce a method that learns jointly embedded document and word vectors solely from the unlabeled document dataset in order to find documents that are semantically similar to the topics described by the keywords. The proposed method requires almost no text preprocessing but is simultaneously effective at retrieving relevant documents with high probability. When successively retrieving documents on different predefined topics from publicly available and commonly used datasets, we achieved an average area under the receiver operating characteristic curve value of 0.95 on one dataset and 0.92 on another. Further, our method can be used for multiclass document classification, without the need to assign labels to the dataset in advance. Compared with an unsupervised classification baseline, we increased F1 scores from 76.6 to 82.7 and from 61.0 to 75.1 on the respective datasets. For easy replication of our approach, we make the developed Lbl2Vec code publicly available as a ready-to-use tool under the 3-Clause BSD license. 3 authors · Oct 12, 2022
- MasakhaPOS: Part-of-Speech Tagging for Typologically Diverse African Languages In this paper, we present MasakhaPOS, the largest part-of-speech (POS) dataset for 20 typologically diverse African languages. We discuss the challenges in annotating POS for these languages using the UD (universal dependencies) guidelines. We conducted extensive POS baseline experiments using conditional random field and several multilingual pre-trained language models. We applied various cross-lingual transfer models trained with data available in UD. Evaluating on the MasakhaPOS dataset, we show that choosing the best transfer language(s) in both single-source and multi-source setups greatly improves the POS tagging performance of the target languages, in particular when combined with cross-lingual parameter-efficient fine-tuning methods. Crucially, transferring knowledge from a language that matches the language family and morphosyntactic properties seems more effective for POS tagging in unseen languages. 44 authors · May 23, 2023
- Explaining Answers with Entailment Trees Our goal, in the context of open-domain textual question-answering (QA), is to explain answers by showing the line of reasoning from what is known to the answer, rather than simply showing a fragment of textual evidence (a "rationale'"). If this could be done, new opportunities for understanding and debugging the system's reasoning become possible. Our approach is to generate explanations in the form of entailment trees, namely a tree of multipremise entailment steps from facts that are known, through intermediate conclusions, to the hypothesis of interest (namely the question + answer). To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees. Given a hypothesis (question + answer), we define three increasingly difficult explanation tasks: generate a valid entailment tree given (a) all relevant sentences (b) all relevant and some irrelevant sentences, or (c) a corpus. We show that a strong language model can partially solve these tasks, in particular when the relevant sentences are included in the input (e.g., 35% of trees for (a) are perfect), and with indications of generalization to other domains. This work is significant as it provides a new type of dataset (multistep entailments) and baselines, offering a new avenue for the community to generate richer, more systematic explanations. 7 authors · Apr 17, 2021
- KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting. 17 authors · Mar 12, 2024
11 Unifying Vision, Text, and Layout for Universal Document Processing We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 8 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark. 9 authors · Dec 5, 2022 1
- LooGLE: Can Long-Context Language Models Understand Long Contexts? Large language models (LLMs), despite their impressive performance in various language tasks, are typically limited to processing texts within context-window size. This limitation has spurred significant research efforts to enhance LLMs' long-context understanding with high-quality long-sequence benchmarks. However, prior datasets in this regard suffer from shortcomings, such as short context length compared to the context window of modern LLMs; outdated documents that have data leakage problems; and an emphasis on short dependency tasks rather than long dependency tasks. In this paper, we present LooGLE, a Long Context Generic Language Evaluation benchmark for LLMs' long context understanding. LooGLE features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains. Human annotators meticulously crafted more than 1,100 high-quality question-answer pairs to meet the long dependency requirements. These pairs underwent thorough cross-validation, yielding the most precise assessment of LLMs' long dependency capabilities. The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings: (i) commercial models outperformed open-sourced models; (ii) LLMs excelled in short dependency tasks like short question-answering and cloze tasks but struggled with more intricate long dependency tasks; (iii) in-context learning and chaining thoughts offered only marginal improvements; (iv) retrieval-based techniques demonstrated substantial benefits for short question-answering, while strategies for extending context window length had limited impact on long context understanding. As such, LooGLE not only provides a systematic and comprehensive evaluation schema on long-context LLMs, but also sheds light on future development of enhanced models towards "true long-context understanding". 4 authors · Nov 7, 2023
- Supervised Learning of Universal Sentence Representations from Natural Language Inference Data Many modern NLP systems rely on word embeddings, previously trained in an unsupervised manner on large corpora, as base features. Efforts to obtain embeddings for larger chunks of text, such as sentences, have however not been so successful. Several attempts at learning unsupervised representations of sentences have not reached satisfactory enough performance to be widely adopted. In this paper, we show how universal sentence representations trained using the supervised data of the Stanford Natural Language Inference datasets can consistently outperform unsupervised methods like SkipThought vectors on a wide range of transfer tasks. Much like how computer vision uses ImageNet to obtain features, which can then be transferred to other tasks, our work tends to indicate the suitability of natural language inference for transfer learning to other NLP tasks. Our encoder is publicly available. 5 authors · May 5, 2017
- Ensemble Distillation for Unsupervised Constituency Parsing We investigate the unsupervised constituency parsing task, which organizes words and phrases of a sentence into a hierarchical structure without using linguistically annotated data. We observe that existing unsupervised parsers capture differing aspects of parsing structures, which can be leveraged to enhance unsupervised parsing performance. To this end, we propose a notion of "tree averaging," based on which we further propose a novel ensemble method for unsupervised parsing. To improve inference efficiency, we further distill the ensemble knowledge into a student model; such an ensemble-then-distill process is an effective approach to mitigate the over-smoothing problem existing in common multi-teacher distilling methods. Experiments show that our method surpasses all previous approaches, consistently demonstrating its effectiveness and robustness across various runs, with different ensemble components, and under domain-shift conditions. 5 authors · Oct 2, 2023
- Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets faces issues due to inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain generalization. To address this, we present B2NERD, a cohesive and efficient dataset for Open NER, normalized from 54 existing English or Chinese datasets using a two-step approach. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly improves LLMs' generalization on Open NER. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. 14 authors · Jun 16, 2024
- Universal Information Extraction as Unified Semantic Matching The challenge of information extraction (IE) lies in the diversity of label schemas and the heterogeneity of structures. Traditional methods require task-specific model design and rely heavily on expensive supervision, making them difficult to generalize to new schemas. In this paper, we decouple IE into two basic abilities, structuring and conceptualizing, which are shared by different tasks and schemas. Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching (USM) framework, which introduces three unified token linking operations to model the abilities of structuring and conceptualizing. In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand. Empirical evaluation on 4 IE tasks shows that the proposed method achieves state-of-the-art performance under the supervised experiments and shows strong generalization ability in zero/few-shot transfer settings. 8 authors · Jan 9, 2023
- Efficient Second-Order TreeCRF for Neural Dependency Parsing In the deep learning (DL) era, parsing models are extremely simplified with little hurt on performance, thanks to the remarkable capability of multi-layer BiLSTMs in context representation. As the most popular graph-based dependency parser due to its high efficiency and performance, the biaffine parser directly scores single dependencies under the arc-factorization assumption, and adopts a very simple local token-wise cross-entropy training loss. This paper for the first time presents a second-order TreeCRF extension to the biaffine parser. For a long time, the complexity and inefficiency of the inside-outside algorithm hinder the popularity of TreeCRF. To address this issue, we propose an effective way to batchify the inside and Viterbi algorithms for direct large matrix operation on GPUs, and to avoid the complex outside algorithm via efficient back-propagation. Experiments and analysis on 27 datasets from 13 languages clearly show that techniques developed before the DL era, such as structural learning (global TreeCRF loss) and high-order modeling are still useful, and can further boost parsing performance over the state-of-the-art biaffine parser, especially for partially annotated training data. We release our code at https://github.com/yzhangcs/crfpar. 3 authors · May 2, 2020
- Paragraph-based Transformer Pre-training for Multi-Sentence Inference Inference tasks such as answer sentence selection (AS2) or fact verification are typically solved by fine-tuning transformer-based models as individual sentence-pair classifiers. Recent studies show that these tasks benefit from modeling dependencies across multiple candidate sentences jointly. In this paper, we first show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks. We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences. Our evaluation on three AS2 and one fact verification datasets demonstrates the superiority of our pre-training technique over the traditional ones for transformers used as joint models for multi-candidate inference tasks, as well as when used as cross-encoders for sentence-pair formulations of these tasks. Our code and pre-trained models are released at https://github.com/amazon-research/wqa-multi-sentence-inference . 4 authors · May 2, 2022
- Embedding Entities and Relations for Learning and Inference in Knowledge Bases We consider learning representations of entities and relations in KBs using the neural-embedding approach. We show that most existing models, including NTN (Socher et al., 2013) and TransE (Bordes et al., 2013b), can be generalized under a unified learning framework, where entities are low-dimensional vectors learned from a neural network and relations are bilinear and/or linear mapping functions. Under this framework, we compare a variety of embedding models on the link prediction task. We show that a simple bilinear formulation achieves new state-of-the-art results for the task (achieving a top-10 accuracy of 73.2% vs. 54.7% by TransE on Freebase). Furthermore, we introduce a novel approach that utilizes the learned relation embeddings to mine logical rules such as "BornInCity(a,b) and CityInCountry(b,c) => Nationality(a,c)". We find that embeddings learned from the bilinear objective are particularly good at capturing relational semantics and that the composition of relations is characterized by matrix multiplication. More interestingly, we demonstrate that our embedding-based rule extraction approach successfully outperforms a state-of-the-art confidence-based rule mining approach in mining Horn rules that involve compositional reasoning. 5 authors · Dec 19, 2014
1 GitTables: A Large-Scale Corpus of Relational Tables The success of deep learning has sparked interest in improving relational table tasks, like data preparation and search, with table representation models trained on large table corpora. Existing table corpora primarily contain tables extracted from HTML pages, limiting the capability to represent offline database tables. To train and evaluate high-capacity models for applications beyond the Web, we need resources with tables that resemble relational database tables. Here we introduce GitTables, a corpus of 1M relational tables extracted from GitHub. Our continuing curation aims at growing the corpus to at least 10M tables. Analyses of GitTables show that its structure, content, and topical coverage differ significantly from existing table corpora. We annotate table columns in GitTables with semantic types, hierarchical relations and descriptions from Schema.org and DBpedia. The evaluation of our annotation pipeline on the T2Dv2 benchmark illustrates that our approach provides results on par with human annotations. We present three applications of GitTables, demonstrating its value for learned semantic type detection models, schema completion methods, and benchmarks for table-to-KG matching, data search, and preparation. We make the corpus and code available at https://gittables.github.io. 3 authors · Jun 14, 2021
- Universalizing Weak Supervision Weak supervision (WS) frameworks are a popular way to bypass hand-labeling large datasets for training data-hungry models. These approaches synthesize multiple noisy but cheaply-acquired estimates of labels into a set of high-quality pseudolabels for downstream training. However, the synthesis technique is specific to a particular kind of label, such as binary labels or sequences, and each new label type requires manually designing a new synthesis algorithm. Instead, we propose a universal technique that enables weak supervision over any label type while still offering desirable properties, including practical flexibility, computational efficiency, and theoretical guarantees. We apply this technique to important problems previously not tackled by WS frameworks including learning to rank, regression, and learning in hyperbolic space. Theoretically, our synthesis approach produces a consistent estimators for learning some challenging but important generalizations of the exponential family model. Experimentally, we validate our framework and show improvement over baselines in diverse settings including real-world learning-to-rank and regression problems along with learning on hyperbolic manifolds. 5 authors · Dec 7, 2021
2 Universal Knowledge Graph Embeddings A variety of knowledge graph embedding approaches have been developed. Most of them obtain embeddings by learning the structure of the knowledge graph within a link prediction setting. As a result, the embeddings reflect only the semantics of a single knowledge graph, and embeddings for different knowledge graphs are not aligned, e.g., they cannot be used to find similar entities across knowledge graphs via nearest neighbor search. However, knowledge graph embedding applications such as entity disambiguation require a more global representation, i.e., a representation that is valid across multiple sources. We propose to learn universal knowledge graph embeddings from large-scale interlinked knowledge sources. To this end, we fuse large knowledge graphs based on the owl:sameAs relation such that every entity is represented by a unique identity. We instantiate our idea by computing universal embeddings based on DBpedia and Wikidata yielding embeddings for about 180 million entities, 15 thousand relations, and 1.2 billion triples. Moreover, we develop a convenient API to provide embeddings as a service. Experiments on link prediction show that universal knowledge graph embeddings encode better semantics compared to embeddings computed on a single knowledge graph. For reproducibility purposes, we provide our source code and datasets open access at https://github.com/dice-group/Universal_Embeddings 7 authors · Oct 23, 2023
- Towards Realistic Low-resource Relation Extraction: A Benchmark with Empirical Baseline Study This paper presents an empirical study to build relation extraction systems in low-resource settings. Based upon recent pre-trained language models, we comprehensively investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; (iii) data augmentation technologies and self-training to generate more labeled in-domain data. We create a benchmark with 8 relation extraction (RE) datasets covering different languages, domains and contexts and perform extensive comparisons over the proposed schemes with combinations. Our experiments illustrate: (i) Though prompt-based tuning is beneficial in low-resource RE, there is still much potential for improvement, especially in extracting relations from cross-sentence contexts with multiple relational triples; (ii) Balancing methods are not always helpful for RE with long-tailed distribution; (iii) Data augmentation complements existing baselines and can bring much performance gain, while self-training may not consistently achieve advancement to low-resource RE. Code and datasets are in https://github.com/zjunlp/LREBench. 6 authors · Oct 19, 2022
- LS-Tree: Model Interpretation When the Data Are Linguistic We study the problem of interpreting trained classification models in the setting of linguistic data sets. Leveraging a parse tree, we propose to assign least-squares based importance scores to each word of an instance by exploiting syntactic constituency structure. We establish an axiomatic characterization of these importance scores by relating them to the Banzhaf value in coalitional game theory. Based on these importance scores, we develop a principled method for detecting and quantifying interactions between words in a sentence. We demonstrate that the proposed method can aid in interpretability and diagnostics for several widely-used language models. 2 authors · Feb 11, 2019
- LongAttn: Selecting Long-context Training Data via Token-level Attention With the development of large language models (LLMs), there has been an increasing need for significant advancements in handling long contexts. To enhance long-context capabilities, constructing high-quality training data with long-range dependencies is crucial. Existing methods to select long-context data often rely on sentence-level analysis, which can be greatly optimized in both performance and efficiency. In this paper, we propose a novel token-level framework, LongAttn, which leverages the self-attention mechanism of LLMs to measure the long-range dependencies for the data. By calculating token-level dependency strength and distribution uniformity of token scores, LongAttn effectively quantifies long-range dependencies, enabling more accurate and efficient data selection. We filter LongABC-32K from open-source long-context datasets (ArXiv, Book, and Code). Through our comprehensive experiments, LongAttn has demonstrated its excellent effectiveness, scalability, and efficiency. To facilitate future research in long-context data, we released our code and the high-quality long-context training data LongABC-32K. 8 authors · Feb 24
- UniKeyphrase: A Unified Extraction and Generation Framework for Keyphrase Prediction Keyphrase Prediction (KP) task aims at predicting several keyphrases that can summarize the main idea of the given document. Mainstream KP methods can be categorized into purely generative approaches and integrated models with extraction and generation. However, these methods either ignore the diversity among keyphrases or only weakly capture the relation across tasks implicitly. In this paper, we propose UniKeyphrase, a novel end-to-end learning framework that jointly learns to extract and generate keyphrases. In UniKeyphrase, stacked relation layer and bag-of-words constraint are proposed to fully exploit the latent semantic relation between extraction and generation in the view of model structure and training process, respectively. Experiments on KP benchmarks demonstrate that our joint approach outperforms mainstream methods by a large margin. 7 authors · Jun 9, 2021
- POLYGLOT-NER: Massive Multilingual Named Entity Recognition The increasing diversity of languages used on the web introduces a new level of complexity to Information Retrieval (IR) systems. We can no longer assume that textual content is written in one language or even the same language family. In this paper, we demonstrate how to build massive multilingual annotators with minimal human expertise and intervention. We describe a system that builds Named Entity Recognition (NER) annotators for 40 major languages using Wikipedia and Freebase. Our approach does not require NER human annotated datasets or language specific resources like treebanks, parallel corpora, and orthographic rules. The novelty of approach lies therein - using only language agnostic techniques, while achieving competitive performance. Our method learns distributed word representations (word embeddings) which encode semantic and syntactic features of words in each language. Then, we automatically generate datasets from Wikipedia link structure and Freebase attributes. Finally, we apply two preprocessing stages (oversampling and exact surface form matching) which do not require any linguistic expertise. Our evaluation is two fold: First, we demonstrate the system performance on human annotated datasets. Second, for languages where no gold-standard benchmarks are available, we propose a new method, distant evaluation, based on statistical machine translation. 4 authors · Oct 14, 2014
- Mirror: A Universal Framework for Various Information Extraction Tasks Sharing knowledge between information extraction tasks has always been a challenge due to the diverse data formats and task variations. Meanwhile, this divergence leads to information waste and increases difficulties in building complex applications in real scenarios. Recent studies often formulate IE tasks as a triplet extraction problem. However, such a paradigm does not support multi-span and n-ary extraction, leading to weak versatility. To this end, we reorganize IE problems into unified multi-slot tuples and propose a universal framework for various IE tasks, namely Mirror. Specifically, we recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm to extract all spans in a single step. It is worth noting that this graph structure is incredibly versatile, and it supports not only complex IE tasks, but also machine reading comprehension and classification tasks. We manually construct a corpus containing 57 datasets for model pretraining, and conduct experiments on 30 datasets across 8 downstream tasks. The experimental results demonstrate that our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems under few-shot and zero-shot settings. The code, model weights, and pretraining corpus are available at https://github.com/Spico197/Mirror . 10 authors · Nov 9, 2023
- MINIMAL: Mining Models for Data Free Universal Adversarial Triggers It is well known that natural language models are vulnerable to adversarial attacks, which are mostly input-specific in nature. Recently, it has been shown that there also exist input-agnostic attacks in NLP models, called universal adversarial triggers. However, existing methods to craft universal triggers are data intensive. They require large amounts of data samples to generate adversarial triggers, which are typically inaccessible by attackers. For instance, previous works take 3000 data samples per class for the SNLI dataset to generate adversarial triggers. In this paper, we present a novel data-free approach, MINIMAL, to mine input-agnostic adversarial triggers from models. Using the triggers produced with our data-free algorithm, we reduce the accuracy of Stanford Sentiment Treebank's positive class from 93.6% to 9.6%. Similarly, for the Stanford Natural Language Inference (SNLI), our single-word trigger reduces the accuracy of the entailment class from 90.95% to less than 0.6\%. Despite being completely data-free, we get equivalent accuracy drops as data-dependent methods. 6 authors · Sep 25, 2021
2 ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile. 4 authors · Aug 6, 2024
2 Datasets for Large Language Models: A Comprehensive Survey This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets. 5 authors · Feb 27, 2024 1
1 DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video. 22 authors · Jan 10, 2022
4 Grammar-Constrained Decoding for Structured NLP Tasks without Finetuning Despite their impressive performance, large language models (LMs) still struggle with reliably generating complex output structures when not finetuned to follow the required output format exactly. To address this issue, grammar-constrained decoding (GCD) can be used to control the generation of LMs, guaranteeing that the output follows a given structure. Most existing GCD methods are, however, limited to specific tasks, such as parsing or code generation. In this work, we demonstrate that formal grammars can describe the output space for a much wider range of tasks and argue that GCD can serve as a unified framework for structured NLP tasks in general. For increased flexibility, we introduce input-dependent grammars, which allow the grammar to depend on the input and thus enable the generation of different output structures for different inputs. We then empirically demonstrate the power and flexibility of GCD-enhanced LMs on (1) information extraction, (2) entity disambiguation, and (3) constituency parsing. Our results indicate that grammar-constrained LMs substantially outperform unconstrained LMs or even beat task-specific finetuned models. Grammar constraints thus hold great promise for harnessing off-the-shelf LMs for a wide range of structured NLP tasks, especially where training data is scarce or finetuning is expensive. Code and data: https://github.com/epfl-dlab/GCD. 4 authors · May 23, 2023
10 Training Task Experts through Retrieval Based Distillation One of the most reliable ways to create deployable models for specialized tasks is to obtain an adequate amount of high-quality task-specific data. However, for specialized tasks, often such datasets do not exist. Existing methods address this by creating such data from large language models (LLMs) and then distilling such knowledge into smaller models. However, these methods are limited by the quality of the LLMs output, and tend to generate repetitive or incorrect data. In this work, we present Retrieval Based Distillation (ReBase), a method that first retrieves data from rich online sources and then transforms them into domain-specific data. This method greatly enhances data diversity. Moreover, ReBase generates Chain-of-Thought reasoning and distills the reasoning capacity of LLMs. We test our method on 4 benchmarks and results show that our method significantly improves performance by up to 7.8% on SQuAD, 1.37% on MNLI, and 1.94% on BigBench-Hard. 5 authors · Jul 7, 2024 1
- Self-Attentive Model for Headline Generation Headline generation is a special type of text summarization task. While the amount of available training data for this task is almost unlimited, it still remains challenging, as learning to generate headlines for news articles implies that the model has strong reasoning about natural language. To overcome this issue, we applied recent Universal Transformer architecture paired with byte-pair encoding technique and achieved new state-of-the-art results on the New York Times Annotated corpus with ROUGE-L F1-score 24.84 and ROUGE-2 F1-score 13.48. We also present the new RIA corpus and reach ROUGE-L F1-score 36.81 and ROUGE-2 F1-score 22.15 on it. 3 authors · Jan 23, 2019
- Constituency Parsing using LLMs Constituency parsing is a fundamental yet unsolved natural language processing task. In this paper, we explore the potential of recent large language models (LLMs) that have exhibited remarkable performance across various domains and tasks to tackle this task. We employ three linearization strategies to transform output trees into symbol sequences, such that LLMs can solve constituency parsing by generating linearized trees. We conduct experiments using a diverse range of LLMs, including ChatGPT, GPT-4, OPT, LLaMA, and Alpaca, comparing their performance against the state-of-the-art constituency parsers. Our experiments encompass zero-shot, few-shot, and full-training learning settings, and we evaluate the models on one in-domain and five out-of-domain test datasets. Our findings reveal insights into LLMs' performance, generalization abilities, and challenges in constituency parsing. 5 authors · Oct 30, 2023
3 Learning a Decision Tree Algorithm with Transformers Decision trees are renowned for their interpretability capability to achieve high predictive performance, especially on tabular data. Traditionally, they are constructed through recursive algorithms, where they partition the data at every node in a tree. However, identifying the best partition is challenging, as decision trees optimized for local segments may not bring global generalization. To address this, we introduce MetaTree, which trains a transformer-based model on filtered outputs from classical algorithms to produce strong decision trees for classification. Specifically, we fit both greedy decision trees and optimized decision trees on a large number of datasets. We then train MetaTree to produce the trees that achieve strong generalization performance. This training enables MetaTree to not only emulate these algorithms, but also to intelligently adapt its strategy according to the context, thereby achieving superior generalization performance. 5 authors · Feb 6, 2024
- TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search and Best-of-N Sampling Inference-time alignment enhances the performance of large language models without requiring additional training or fine-tuning but presents challenges due to balancing computational efficiency with high-quality output. Best-of-N (BoN) sampling, as a simple yet powerful approach, generates multiple responses and selects the best one, achieving improved performance but with a high computational cost. We propose TreeBoN, a novel framework that integrates a speculative tree-search strategy into Best-of-N (BoN) Sampling. TreeBoN maintains a set of parent nodes, iteratively branching and pruning low-quality responses, thereby reducing computational overhead while maintaining high output quality. Our approach also leverages token-level rewards from Direct Preference Optimization (DPO) to guide tree expansion and prune low-quality paths. We evaluate TreeBoN using AlpacaFarm, UltraFeedback, GSM8K, HH-RLHF, and TutorEval datasets, demonstrating consistent improvements. Specifically, TreeBoN achieves a 65% win rate at maximum lengths of 192 and 384 tokens, outperforming standard BoN with the same computational cost. Furthermore, TreeBoN achieves around a 60% win rate across longer responses, showcasing its scalability and alignment efficacy. 9 authors · Oct 18, 2024
- How to Unleash the Power of Large Language Models for Few-shot Relation Extraction? Scaling language models have revolutionized widespread NLP tasks, yet little comprehensively explored few-shot relation extraction with large language models. In this paper, we investigate principal methodologies, in-context learning and data generation, for few-shot relation extraction via GPT-3.5 through exhaustive experiments. To enhance few-shot performance, we further propose task-related instructions and schema-constrained data generation. We observe that in-context learning can achieve performance on par with previous prompt learning approaches, and data generation with the large language model can boost previous solutions to obtain new state-of-the-art few-shot results on four widely-studied relation extraction datasets. We hope our work can inspire future research for the capabilities of large language models in few-shot relation extraction. Code is available in https://github.com/zjunlp/DeepKE/tree/main/example/llm. 4 authors · May 2, 2023
- Branchformer: Parallel MLP-Attention Architectures to Capture Local and Global Context for Speech Recognition and Understanding Conformer has proven to be effective in many speech processing tasks. It combines the benefits of extracting local dependencies using convolutions and global dependencies using self-attention. Inspired by this, we propose a more flexible, interpretable and customizable encoder alternative, Branchformer, with parallel branches for modeling various ranged dependencies in end-to-end speech processing. In each encoder layer, one branch employs self-attention or its variant to capture long-range dependencies, while the other branch utilizes an MLP module with convolutional gating (cgMLP) to extract local relationships. We conduct experiments on several speech recognition and spoken language understanding benchmarks. Results show that our model outperforms both Transformer and cgMLP. It also matches with or outperforms state-of-the-art results achieved by Conformer. Furthermore, we show various strategies to reduce computation thanks to the two-branch architecture, including the ability to have variable inference complexity in a single trained model. The weights learned for merging branches indicate how local and global dependencies are utilized in different layers, which benefits model designing. 4 authors · Jul 6, 2022
22 Recurrent Drafter for Fast Speculative Decoding in Large Language Models In this paper, we introduce an improved approach of speculative decoding aimed at enhancing the efficiency of serving large language models. Our method capitalizes on the strengths of two established techniques: the classic two-model speculative decoding approach, and the more recent single-model approach, Medusa. Drawing inspiration from Medusa, our approach adopts a single-model strategy for speculative decoding. However, our method distinguishes itself by employing a single, lightweight draft head with a recurrent dependency design, akin in essence to the small, draft model uses in classic speculative decoding, but without the complexities of the full transformer architecture. And because of the recurrent dependency, we can use beam search to swiftly filter out undesired candidates with the draft head. The outcome is a method that combines the simplicity of single-model design and avoids the need to create a data-dependent tree attention structure only for inference in Medusa. We empirically demonstrate the effectiveness of the proposed method on several popular open source language models, along with a comprehensive analysis of the trade-offs involved in adopting this approach. 5 authors · Mar 14, 2024 1
- Autoregressive Structured Prediction with Language Models Recent years have seen a paradigm shift in NLP towards using pretrained language models ({PLM}) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution. 5 authors · Oct 26, 2022
2 UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks. 11 authors · Feb 7, 2024
2 Building Efficient Universal Classifiers with Natural Language Inference Generative Large Language Models (LLMs) have become the mainstream choice for fewshot and zeroshot learning thanks to the universality of text generation. Many users, however, do not need the broad capabilities of generative LLMs when they only want to automate a classification task. Smaller BERT-like models can also learn universal tasks, which allow them to do any text classification task without requiring fine-tuning (zeroshot classification) or to learn new tasks with only a few examples (fewshot), while being significantly more efficient than generative LLMs. This paper (1) explains how Natural Language Inference (NLI) can be used as a universal classification task that follows similar principles as instruction fine-tuning of generative LLMs, (2) provides a step-by-step guide with reusable Jupyter notebooks for building a universal classifier, and (3) shares the resulting universal classifier that is trained on 33 datasets with 389 diverse classes. Parts of the code we share has been used to train our older zeroshot classifiers that have been downloaded more than 55 million times via the Hugging Face Hub as of December 2023. Our new classifier improves zeroshot performance by 9.4%. 4 authors · Dec 29, 2023
1 Semi-Supervised Neural System for Tagging, Parsing and Lematization This paper describes the ICS PAS system which took part in CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. The system consists of jointly trained tagger, lemmatizer, and dependency parser which are based on features extracted by a biLSTM network. The system uses both fully connected and dilated convolutional neural architectures. The novelty of our approach is the use of an additional loss function, which reduces the number of cycles in the predicted dependency graphs, and the use of self-training to increase the system performance. The proposed system, i.e. ICS PAS (Warszawa), ranked 3th/4th in the official evaluation obtaining the following overall results: 73.02 (LAS), 60.25 (MLAS) and 64.44 (BLEX). 2 authors · Apr 26, 2020
1 A Joint Model for Definition Extraction with Syntactic Connection and Semantic Consistency Definition Extraction (DE) is one of the well-known topics in Information Extraction that aims to identify terms and their corresponding definitions in unstructured texts. This task can be formalized either as a sentence classification task (i.e., containing term-definition pairs or not) or a sequential labeling task (i.e., identifying the boundaries of the terms and definitions). The previous works for DE have only focused on one of the two approaches, failing to model the inter-dependencies between the two tasks. In this work, we propose a novel model for DE that simultaneously performs the two tasks in a single framework to benefit from their inter-dependencies. Our model features deep learning architectures to exploit the global structures of the input sentences as well as the semantic consistencies between the terms and the definitions, thereby improving the quality of the representation vectors for DE. Besides the joint inference between sentence classification and sequential labeling, the proposed model is fundamentally different from the prior work for DE in that the prior work has only employed the local structures of the input sentences (i.e., word-to-word relations), and not yet considered the semantic consistencies between terms and definitions. In order to implement these novel ideas, our model presents a multi-task learning framework that employs graph convolutional neural networks and predicts the dependency paths between the terms and the definitions. We also seek to enforce the consistency between the representations of the terms and definitions both globally (i.e., increasing semantic consistency between the representations of the entire sentences and the terms/definitions) and locally (i.e., promoting the similarity between the representations of the terms and the definitions). 4 authors · Nov 5, 2019
- Guided Generation of Cause and Effect We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture. 5 authors · Jul 20, 2021
- Natural Answer Generation: From Factoid Answer to Full-length Answer using Grammar Correction Question Answering systems these days typically use template-based language generation. Though adequate for a domain-specific task, these systems are too restrictive and predefined for domain-independent systems. This paper proposes a system that outputs a full-length answer given a question and the extracted factoid answer (short spans such as named entities) as the input. Our system uses constituency and dependency parse trees of questions. A transformer-based Grammar Error Correction model GECToR (2020), is used as a post-processing step for better fluency. We compare our system with (i) Modified Pointer Generator (SOTA) and (ii) Fine-tuned DialoGPT for factoid questions. We also test our approach on existential (yes-no) questions with better results. Our model generates accurate and fluent answers than the state-of-the-art (SOTA) approaches. The evaluation is done on NewsQA and SqUAD datasets with an increment of 0.4 and 0.9 percentage points in ROUGE-1 score respectively. Also the inference time is reduced by 85\% as compared to the SOTA. The improved datasets used for our evaluation will be released as part of the research contribution. 5 authors · Dec 7, 2021
- Argumentation Element Annotation Modeling using XLNet This study demonstrates the effectiveness of XLNet, a transformer-based language model, for annotating argumentative elements in persuasive essays. XLNet's architecture incorporates a recurrent mechanism that allows it to model long-term dependencies in lengthy texts. Fine-tuned XLNet models were applied to three datasets annotated with different schemes - a proprietary dataset using the Annotations for Revisions and Reflections on Writing (ARROW) scheme, the PERSUADE corpus, and the Argument Annotated Essays (AAE) dataset. The XLNet models achieved strong performance across all datasets, even surpassing human agreement levels in some cases. This shows XLNet capably handles diverse annotation schemes and lengthy essays. Comparisons between the model outputs on different datasets also revealed insights into the relationships between the annotation tags. Overall, XLNet's strong performance on modeling argumentative structures across diverse datasets highlights its suitability for providing automated feedback on essay organization. 4 authors · Nov 10, 2023
2 Improving Knowledge Graph Embedding Using Simple Constraints Embedding knowledge graphs (KGs) into continuous vector spaces is a focus of current research. Early works performed this task via simple models developed over KG triples. Recent attempts focused on either designing more complicated triple scoring models, or incorporating extra information beyond triples. This paper, by contrast, investigates the potential of using very simple constraints to improve KG embedding. We examine non-negativity constraints on entity representations and approximate entailment constraints on relation representations. The former help to learn compact and interpretable representations for entities. The latter further encode regularities of logical entailment between relations into their distributed representations. These constraints impose prior beliefs upon the structure of the embedding space, without negative impacts on efficiency or scalability. Evaluation on WordNet, Freebase, and DBpedia shows that our approach is simple yet surprisingly effective, significantly and consistently outperforming competitive baselines. The constraints imposed indeed improve model interpretability, leading to a substantially increased structuring of the embedding space. Code and data are available at https://github.com/iieir-km/ComplEx-NNE_AER. 4 authors · May 7, 2018
- TAGLETS: A System for Automatic Semi-Supervised Learning with Auxiliary Data Machine learning practitioners often have access to a spectrum of data: labeled data for the target task (which is often limited), unlabeled data, and auxiliary data, the many available labeled datasets for other tasks. We describe TAGLETS, a system built to study techniques for automatically exploiting all three types of data and creating high-quality, servable classifiers. The key components of TAGLETS are: (1) auxiliary data organized according to a knowledge graph, (2) modules encapsulating different methods for exploiting auxiliary and unlabeled data, and (3) a distillation stage in which the ensembled modules are combined into a servable model. We compare TAGLETS with state-of-the-art transfer learning and semi-supervised learning methods on four image classification tasks. Our study covers a range of settings, varying the amount of labeled data and the semantic relatedness of the auxiliary data to the target task. We find that the intelligent incorporation of auxiliary and unlabeled data into multiple learning techniques enables TAGLETS to match-and most often significantly surpass-these alternatives. TAGLETS is available as an open-source system at github.com/BatsResearch/taglets. 7 authors · Nov 8, 2021
- UniGen: Universal Domain Generalization for Sentiment Classification via Zero-shot Dataset Generation Although pre-trained language models have exhibited great flexibility and versatility with prompt-based few-shot learning, they suffer from the extensive parameter size and limited applicability for inference. Recent studies have suggested that PLMs be used as dataset generators and a tiny task-specific model be trained to achieve efficient inference. However, their applicability to various domains is limited because they tend to generate domain-specific datasets. In this work, we propose a novel approach to universal domain generalization that generates a dataset regardless of the target domain. This allows for generalization of the tiny task model to any domain that shares the label space, thus enhancing the real-world applicability of the dataset generation paradigm. Our experiments indicate that the proposed method accomplishes generalizability across various domains while using a parameter set that is orders of magnitude smaller than PLMs. 5 authors · May 2, 2024
- Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings Language resources such as wordnets remain indispensable tools for different natural language tasks and applications. However, for low-resource languages such as Filipino, existing wordnets are old and outdated, and producing new ones may be slow and costly in terms of time and resources. In this paper, we propose an automatic method for constructing a wordnet from scratch using only an unlabeled corpus and a sentence embeddings-based language model. Using this, we produce FilWordNet, a new wordnet that supplants and improves the outdated Filipino WordNet. We evaluate our automatically-induced senses and synsets by matching them with senses from the Princeton WordNet, as well as comparing the synsets to the old Filipino WordNet. We empirically show that our method can induce existing, as well as potentially new, senses and synsets automatically without the need for human supervision. 6 authors · Apr 7, 2022
- Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT. 7 authors · Dec 10, 2022
- Polyglot Semantic Parsing in APIs Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-the-art performance on the above datasets, and apply this method to two other benchmark SP tasks. 3 authors · Mar 19, 2018
- HugNLP: A Unified and Comprehensive Library for Natural Language Processing In this paper, we introduce HugNLP, a unified and comprehensive library for natural language processing (NLP) with the prevalent backend of HuggingFace Transformers, which is designed for NLP researchers to easily utilize off-the-shelf algorithms and develop novel methods with user-defined models and tasks in real-world scenarios. HugNLP consists of a hierarchical structure including models, processors and applications that unifies the learning process of pre-trained language models (PLMs) on different NLP tasks. Additionally, we present some featured NLP applications to show the effectiveness of HugNLP, such as knowledge-enhanced PLMs, universal information extraction, low-resource mining, and code understanding and generation, etc. The source code will be released on GitHub (https://github.com/wjn1996/HugNLP). 6 authors · Feb 27, 2023
- N-LTP: An Open-source Neural Language Technology Platform for Chinese We introduce N-LTP, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as Stanza, that adopt an independent model for each task, N-LTP adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method DBLP:journals/corr/abs-1907-04829 where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at https://github.com/HIT-SCIR/ltp. 4 authors · Sep 24, 2020
2 OpenNRE: An Open and Extensible Toolkit for Neural Relation Extraction OpenNRE is an open-source and extensible toolkit that provides a unified framework to implement neural models for relation extraction (RE). Specifically, by implementing typical RE methods, OpenNRE not only allows developers to train custom models to extract structured relational facts from the plain text but also supports quick model validation for researchers. Besides, OpenNRE provides various functional RE modules based on both TensorFlow and PyTorch to maintain sufficient modularity and extensibility, making it becomes easy to incorporate new models into the framework. Besides the toolkit, we also release an online system to meet real-time extraction without any training and deploying. Meanwhile, the online system can extract facts in various scenarios as well as aligning the extracted facts to Wikidata, which may benefit various downstream knowledge-driven applications (e.g., information retrieval and question answering). More details of the toolkit and online system can be obtained from http://github.com/thunlp/OpenNRE. 6 authors · Sep 28, 2019
2 Semantic Role Labeling Meets Definition Modeling: Using Natural Language to Describe Predicate-Argument Structures One of the common traits of past and present approaches for Semantic Role Labeling (SRL) is that they rely upon discrete labels drawn from a predefined linguistic inventory to classify predicate senses and their arguments. However, we argue this need not be the case. In this paper, we present an approach that leverages Definition Modeling to introduce a generalized formulation of SRL as the task of describing predicate-argument structures using natural language definitions instead of discrete labels. Our novel formulation takes a first step towards placing interpretability and flexibility foremost, and yet our experiments and analyses on PropBank-style and FrameNet-style, dependency-based and span-based SRL also demonstrate that a flexible model with an interpretable output does not necessarily come at the expense of performance. We release our software for research purposes at https://github.com/SapienzaNLP/dsrl. 4 authors · Dec 2, 2022
- GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond The Non-Local Network (NLNet) presents a pioneering approach for capturing long-range dependencies, via aggregating query-specific global context to each query position. However, through a rigorous empirical analysis, we have found that the global contexts modeled by non-local network are almost the same for different query positions within an image. In this paper, we take advantage of this finding to create a simplified network based on a query-independent formulation, which maintains the accuracy of NLNet but with significantly less computation. We further observe that this simplified design shares similar structure with Squeeze-Excitation Network (SENet). Hence we unify them into a three-step general framework for global context modeling. Within the general framework, we design a better instantiation, called the global context (GC) block, which is lightweight and can effectively model the global context. The lightweight property allows us to apply it for multiple layers in a backbone network to construct a global context network (GCNet), which generally outperforms both simplified NLNet and SENet on major benchmarks for various recognition tasks. The code and configurations are released at https://github.com/xvjiarui/GCNet. 5 authors · Apr 25, 2019
- LLMBox: A Comprehensive Library for Large Language Models To facilitate the research on large language models (LLMs), this paper presents a comprehensive and unified library, LLMBox, to ease the development, use, and evaluation of LLMs. This library is featured with three main merits: (1) a unified data interface that supports the flexible implementation of various training strategies, (2) a comprehensive evaluation that covers extensive tasks, datasets, and models, and (3) more practical consideration, especially on user-friendliness and efficiency. With our library, users can easily reproduce existing methods, train new models, and conduct comprehensive performance comparisons. To rigorously test LLMBox, we conduct extensive experiments in a diverse coverage of evaluation settings, and experimental results demonstrate the effectiveness and efficiency of our library in supporting various implementations related to LLMs. The detailed introduction and usage guidance can be found at https://github.com/RUCAIBox/LLMBox. 25 authors · Jul 7, 2024
2 IEPile: Unearthing Large-Scale Schema-Based Information Extraction Corpus Large Language Models (LLMs) demonstrate remarkable potential across various domains; however, they exhibit a significant performance gap in Information Extraction (IE). Note that high-quality instruction data is the vital key for enhancing the specific capabilities of LLMs, while current IE datasets tend to be small in scale, fragmented, and lack standardized schema. To this end, we introduce IEPile, a comprehensive bilingual (English and Chinese) IE instruction corpus, which contains approximately 0.32B tokens. We construct IEPile by collecting and cleaning 33 existing IE datasets, and introduce schema-based instruction generation to unearth a large-scale corpus. Experimental results on LLaMA and Baichuan demonstrate that using IEPile can enhance the performance of LLMs for IE, especially the zero-shot generalization. We open-source the resource and pre-trained models, hoping to provide valuable support to the NLP community. 7 authors · Feb 22, 2024
3 tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation The HuggingFace Datasets Hub hosts thousands of datasets. This provides exciting opportunities for language model training and evaluation. However, the datasets for a given type of task are stored with different schemas, and harmonization is harder than it seems (https://xkcd.com/927/). Multi-task training or evaluation requires manual work to fit data into task templates. Various initiatives independently address this problem by releasing the harmonized datasets or harmonization codes to preprocess datasets to the same format. We identify patterns across previous preprocessings, e.g. mapping of column names, and extraction of a specific sub-field from structured data in a column, and propose a structured annotation framework that makes our annotations fully exposed and not buried in unstructured code. We release a dataset annotation framework and dataset annotations for more than 400 English tasks (https://github.com/sileod/tasksource). These annotations provide metadata, like the name of the columns that should be used as input or labels for all datasets, and can save time for future dataset preprocessings, even if they do not use our framework. We fine-tune a multi-task text encoder on all tasksource tasks, outperforming every publicly available text encoder of comparable size on an external evaluation https://hf.co/sileod/deberta-v3-base-tasksource-nli. 1 authors · Jan 14, 2023
- Increasing The Performance of Cognitively Inspired Data-Efficient Language Models via Implicit Structure Building In this paper, we describe our submission to the BabyLM Challenge 2023 shared task on data-efficient language model (LM) pretraining (Warstadt et al., 2023). We train transformer-based masked language models that incorporate unsupervised predictions about hierarchical sentence structure into the model architecture. Concretely, we use the Structformer architecture (Shen et al., 2021) and variants thereof. StructFormer models have been shown to perform well on unsupervised syntactic induction based on limited pretraining data, and to yield performance improvements over a vanilla transformer architecture (Shen et al., 2021). Evaluation of our models on 39 tasks provided by the BabyLM challenge shows promising improvements of models that integrate a hierarchical bias into the architecture at some particular tasks, even though they fail to consistently outperform the RoBERTa baseline model provided by the shared task organizers on all tasks. 3 authors · Oct 31, 2023
- CFBench: A Comprehensive Constraints-Following Benchmark for LLMs The adeptness of Large Language Models (LLMs) in comprehending and following natural language instructions is critical for their deployment in sophisticated real-world applications. Existing evaluations mainly focus on fragmented constraints or narrow scenarios, but they overlook the comprehensiveness and authenticity of constraints from the user's perspective. To bridge this gap, we propose CFBench, a large-scale Comprehensive Constraints Following Benchmark for LLMs, featuring 1,000 curated samples that cover more than 200 real-life scenarios and over 50 NLP tasks. CFBench meticulously compiles constraints from real-world instructions and constructs an innovative systematic framework for constraint types, which includes 10 primary categories and over 25 subcategories, and ensures each constraint is seamlessly integrated within the instructions. To make certain that the evaluation of LLM outputs aligns with user perceptions, we propose an advanced methodology that integrates multi-dimensional assessment criteria with requirement prioritization, covering various perspectives of constraints, instructions, and requirement fulfillment. Evaluating current leading LLMs on CFBench reveals substantial room for improvement in constraints following, and we further investigate influencing factors and enhancement strategies. The data and code are publicly available at https://github.com/PKU-Baichuan-MLSystemLab/CFBench 13 authors · Aug 2, 2024
- TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking In this paper, we present TituLLMs, the first large pretrained Bangla LLMs, available in 1b and 3b parameter sizes. Due to computational constraints during both training and inference, we focused on smaller models. To train TituLLMs, we collected a pretraining dataset of approximately ~37 billion tokens. We extended the Llama-3.2 tokenizer to incorporate language- and culture-specific knowledge, which also enables faster training and inference. There was a lack of benchmarking datasets to benchmark LLMs for Bangla. To address this gap, we developed five benchmarking datasets. We benchmarked various LLMs, including TituLLMs, and demonstrated that TituLLMs outperforms its initial multilingual versions. However, this is not always the case, highlighting the complexities of language adaptation. Our work lays the groundwork for adapting existing multilingual open models to other low-resource languages. To facilitate broader adoption and further research, we have made the TituLLMs models and benchmarking datasets publicly available (https://huggingface.co./collections/hishab/titulm-llama-family-6718d31fc1b83529276f490a). 10 authors · Feb 16
- ScaleDet: A Scalable Multi-Dataset Object Detector Multi-dataset training provides a viable solution for exploiting heterogeneous large-scale datasets without extra annotation cost. In this work, we propose a scalable multi-dataset detector (ScaleDet) that can scale up its generalization across datasets when increasing the number of training datasets. Unlike existing multi-dataset learners that mostly rely on manual relabelling efforts or sophisticated optimizations to unify labels across datasets, we introduce a simple yet scalable formulation to derive a unified semantic label space for multi-dataset training. ScaleDet is trained by visual-textual alignment to learn the label assignment with label semantic similarities across datasets. Once trained, ScaleDet can generalize well on any given upstream and downstream datasets with seen and unseen classes. We conduct extensive experiments using LVIS, COCO, Objects365, OpenImages as upstream datasets, and 13 datasets from Object Detection in the Wild (ODinW) as downstream datasets. Our results show that ScaleDet achieves compelling strong model performance with an mAP of 50.7 on LVIS, 58.8 on COCO, 46.8 on Objects365, 76.2 on OpenImages, and 71.8 on ODinW, surpassing state-of-the-art detectors with the same backbone. 7 authors · Jun 7, 2023
1 GRANDE: Gradient-Based Decision Tree Ensembles for Tabular Data Despite the success of deep learning for text and image data, tree-based ensemble models are still state-of-the-art for machine learning with heterogeneous tabular data. However, there is a significant need for tabular-specific gradient-based methods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned decision tree ensembles using end-to-end gradient descent. GRANDE is based on a dense representation of tree ensembles, which affords to use backpropagation with a straight-through operator to jointly optimize all model parameters. Our method combines axis-aligned splits, which is a useful inductive bias for tabular data, with the flexibility of gradient-based optimization. Furthermore, we introduce an advanced instance-wise weighting that facilitates learning representations for both, simple and complex relations, within a single model. We conducted an extensive evaluation on a predefined benchmark with 19 classification datasets and demonstrate that our method outperforms existing gradient-boosting and deep learning frameworks on most datasets. The method is available under: https://github.com/s-marton/GRANDE 4 authors · Sep 29, 2023
- UnifiedQA: Crossing Format Boundaries With a Single QA System Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UnifiedQA, that performs surprisingly well across 17 QA datasets spanning 4 diverse formats. UnifiedQA performs on par with 9 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UnifiedQA performs surprisingly well, showing strong generalization from its out-of-format training data. Finally, simply fine-tuning this pre-trained QA model into specialized models results in a new state of the art on 6 datasets, establishing UnifiedQA as a strong starting point for building QA systems. 7 authors · May 2, 2020
- CLUTRR: A Diagnostic Benchmark for Inductive Reasoning from Text The recent success of natural language understanding (NLU) systems has been troubled by results highlighting the failure of these models to generalize in a systematic and robust way. In this work, we introduce a diagnostic benchmark suite, named CLUTRR, to clarify some key issues related to the robustness and systematicity of NLU systems. Motivated by classic work on inductive logic programming, CLUTRR requires that an NLU system infer kinship relations between characters in short stories. Successful performance on this task requires both extracting relationships between entities, as well as inferring the logical rules governing these relationships. CLUTRR allows us to precisely measure a model's ability for systematic generalization by evaluating on held-out combinations of logical rules, and it allows us to evaluate a model's robustness by adding curated noise facts. Our empirical results highlight a substantial performance gap between state-of-the-art NLU models (e.g., BERT and MAC) and a graph neural network model that works directly with symbolic inputs---with the graph-based model exhibiting both stronger generalization and greater robustness. 5 authors · Aug 16, 2019
2 Unbabel's Participation in the WMT20 Metrics Shared Task We present the contribution of the Unbabel team to the WMT 2020 Shared Task on Metrics. We intend to participate on the segment-level, document-level and system-level tracks on all language pairs, as well as the 'QE as a Metric' track. Accordingly, we illustrate results of our models in these tracks with reference to test sets from the previous year. Our submissions build upon the recently proposed COMET framework: We train several estimator models to regress on different human-generated quality scores and a novel ranking model trained on relative ranks obtained from Direct Assessments. We also propose a simple technique for converting segment-level predictions into a document-level score. Overall, our systems achieve strong results for all language pairs on previous test sets and in many cases set a new state-of-the-art. 4 authors · Oct 29, 2020
1 GEIC: Universal and Multilingual Named Entity Recognition with Large Language Models Large Language Models (LLMs) have supplanted traditional methods in numerous natural language processing tasks. Nonetheless, in Named Entity Recognition (NER), existing LLM-based methods underperform compared to baselines and require significantly more computational resources, limiting their application. In this paper, we introduce the task of generation-based extraction and in-context classification (GEIC), designed to leverage LLMs' prior knowledge and self-attention mechanisms for NER tasks. We then propose CascadeNER, a universal and multilingual GEIC framework for few-shot and zero-shot NER. CascadeNER employs model cascading to utilize two small-parameter LLMs to extract and classify independently, reducing resource consumption while enhancing accuracy. We also introduce AnythingNER, the first NER dataset specifically designed for LLMs, including 8 languages, 155 entity types and a novel dynamic categorization system. Experiments show that CascadeNER achieves state-of-the-art performance on low-resource and fine-grained scenarios, including CrossNER and FewNERD. Our work is openly accessible. 6 authors · Sep 17, 2024
1 Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem The development of generative language models that can create long and coherent textual outputs via autoregression has lead to a proliferation of uses and a corresponding sweep of analyses as researches work to determine the limitations of this new paradigm. Unlike humans, these 'Large Language Models' (LLMs) are highly sensitive to small changes in their inputs, leading to unwanted inconsistency in their behavior. One problematic inconsistency when LLMs are used to answer multiple-choice questions or analyze multiple inputs is order dependency: the output of an LLM can (and often does) change significantly when sub-sequences are swapped, despite both orderings being semantically identical. In this paper we present , a technique that guarantees the output of an LLM will not have order dependence on a specified set of sub-sequences. We show that this method provably eliminates order dependency, and that it can be applied to any transformer-based LLM to enable text generation that is unaffected by re-orderings. Delving into the implications of our method, we show that, despite our inputs being out of distribution, the impact on expected accuracy is small, where the expectation is over the order of uniformly chosen shuffling of the candidate responses, and usually significantly less in practice. Thus, can be used as a 'dropped-in' method on fully trained models. Finally, we discuss how our method's success suggests that other strong guarantees can be obtained on LLM performance via modifying the input representations. 5 authors · Jun 4, 2024
- Open, Closed, or Small Language Models for Text Classification? Recent advancements in large language models have demonstrated remarkable capabilities across various NLP tasks. But many questions remain, including whether open-source models match closed ones, why these models excel or struggle with certain tasks, and what types of practical procedures can improve performance. We address these questions in the context of classification by evaluating three classes of models using eight datasets across three distinct tasks: named entity recognition, political party prediction, and misinformation detection. While larger LLMs often lead to improved performance, open-source models can rival their closed-source counterparts by fine-tuning. Moreover, supervised smaller models, like RoBERTa, can achieve similar or even greater performance in many datasets compared to generative LLMs. On the other hand, closed models maintain an advantage in hard tasks that demand the most generalizability. This study underscores the importance of model selection based on task requirements 5 authors · Aug 19, 2023
- Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems. 3 authors · May 25, 2022
3 KAXAI: An Integrated Environment for Knowledge Analysis and Explainable AI In order to fully harness the potential of machine learning, it is crucial to establish a system that renders the field more accessible and less daunting for individuals who may not possess a comprehensive understanding of its intricacies. The paper describes the design of a system that integrates AutoML, XAI, and synthetic data generation to provide a great UX design for users. The system allows users to navigate and harness the power of machine learning while abstracting its complexities and providing high usability. The paper proposes two novel classifiers, Logistic Regression Forest and Support Vector Tree, for enhanced model performance, achieving 96\% accuracy on a diabetes dataset and 93\% on a survey dataset. The paper also introduces a model-dependent local interpreter called MEDLEY and evaluates its interpretation against LIME, Greedy, and Parzen. Additionally, the paper introduces LLM-based synthetic data generation, library-based data generation, and enhancing the original dataset with GAN. The findings on synthetic data suggest that enhancing the original dataset with GAN is the most reliable way to generate synthetic data, as evidenced by KS tests, standard deviation, and feature importance. The authors also found that GAN works best for quantitative datasets. 2 authors · Dec 30, 2023
- LaoPLM: Pre-trained Language Models for Lao Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scare situation of the Lao language. We additionally present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We will release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications. 5 authors · Oct 12, 2021
1 UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg. 23 authors · Jan 15, 2022
2 SyntaxShap: Syntax-aware Explainability Method for Text Generation To harness the power of large language models in safety-critical domains we need to ensure the explainability of their predictions. However, despite the significant attention to model interpretability, there remains an unexplored domain in explaining sequence-to-sequence tasks using methods tailored for textual data. This paper introduces SyntaxShap, a local, model-agnostic explainability method for text generation that takes into consideration the syntax in the text data. The presented work extends Shapley values to account for parsing-based syntactic dependencies. Taking a game theoric approach, SyntaxShap only considers coalitions constraint by the dependency tree. We adopt a model-based evaluation to compare SyntaxShap and its weighted form to state-of-the-art explainability methods adapted to text generation tasks, using diverse metrics including faithfulness, complexity, coherency, and semantic alignment of the explanations to the model. We show that our syntax-aware method produces explanations that help build more faithful, coherent, and interpretable explanations for predictions by autoregressive models. 3 authors · Feb 14, 2024
- MultiLS: A Multi-task Lexical Simplification Framework Lexical Simplification (LS) automatically replaces difficult to read words for easier alternatives while preserving a sentence's original meaning. LS is a precursor to Text Simplification with the aim of improving text accessibility to various target demographics, including children, second language learners, individuals with reading disabilities or low literacy. Several datasets exist for LS. These LS datasets specialize on one or two sub-tasks within the LS pipeline. However, as of this moment, no single LS dataset has been developed that covers all LS sub-tasks. We present MultiLS, the first LS framework that allows for the creation of a multi-task LS dataset. We also present MultiLS-PT, the first dataset to be created using the MultiLS framework. We demonstrate the potential of MultiLS-PT by carrying out all LS sub-tasks of (1). lexical complexity prediction (LCP), (2). substitute generation, and (3). substitute ranking for Portuguese. Model performances are reported, ranging from transformer-based models to more recent large language models (LLMs). 4 authors · Feb 22, 2024
- Entity Disambiguation with Entity Definitions Local models have recently attained astounding performances in Entity Disambiguation (ED), with generative and extractive formulations being the most promising research directions. However, previous works limited their studies to using, as the textual representation of each candidate, only its Wikipedia title. Although certainly effective, this strategy presents a few critical issues, especially when titles are not sufficiently informative or distinguishable from one another. In this paper, we address this limitation and investigate to what extent more expressive textual representations can mitigate it. We thoroughly evaluate our approach against standard benchmarks in ED and find extractive formulations to be particularly well-suited to these representations: we report a new state of the art on 2 out of 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns. We release our code, data and model checkpoints at https://github.com/SapienzaNLP/extend. 4 authors · Oct 11, 2022
- Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus We present the call for papers for the BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus. This shared task is intended for participants with an interest in small scale language modeling, human language acquisition, low-resource NLP, and cognitive modeling. In partnership with CoNLL and CMCL, we provide a platform for approaches to pretraining with a limited-size corpus sourced from data inspired by the input to children. The task has three tracks, two of which restrict the training data to pre-released datasets of 10M and 100M words and are dedicated to explorations of approaches such as architectural variations, self-supervised objectives, or curriculum learning. The final track only restricts the amount of text used, allowing innovation in the choice of the data, its domain, and even its modality (i.e., data from sources other than text is welcome). We will release a shared evaluation pipeline which scores models on a variety of benchmarks and tasks, including targeted syntactic evaluations and natural language understanding. 6 authors · Jan 27, 2023
- Incubating Text Classifiers Following User Instruction with Nothing but LLM In this paper, we aim to generate text classification data given arbitrary class definitions (i.e., user instruction), so one can train a small text classifier without any human annotation or raw corpus. Compared with pioneer attempts, our proposed Incubator is the first framework that can handle complicated and even mutually dependent classes (e.g., "TED Talk given by Educator" and "Other"). Specifically, Incubator is an LLM firstly tuned on the instruction-to-data mappings that we obtained from classification datasets and descriptions on HuggingFace together with in-context augmentation by GPT-4. We then refine Incubator by learning on the cluster centers of semantic textual embeddings to emphasize the uniformity and semantic diversity in generations. We compare Incubator on various classification tasks with strong baselines such as direct LLM-based inference and training data generation by prompt engineering. Experiments show Incubator is able to (1) perform well on traditional benchmarks, (2) take label dependency and user preference into consideration, and (3) enable logical text mining by incubating multiple classifiers. 2 authors · Apr 16, 2024
8 TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. In this study, we document the development of open-foundation models tailored for use in low-resource settings, their limitations, and their benefits. This is the TeenyTinyLlama pair: two compact models for Brazilian Portuguese text generation. We release them under the permissive Apache 2.0 license on GitHub and Hugging Face for community use and further development. See https://github.com/Nkluge-correa/TeenyTinyLlama 5 authors · Jan 29, 2024 2
- Scaling up COMETKIWI: Unbabel-IST 2023 Submission for the Quality Estimation Shared Task We present the joint contribution of Unbabel and Instituto Superior T\'ecnico to the WMT 2023 Shared Task on Quality Estimation (QE). Our team participated on all tasks: sentence- and word-level quality prediction (task 1) and fine-grained error span detection (task 2). For all tasks, we build on the COMETKIWI-22 model (Rei et al., 2022b). Our multilingual approaches are ranked first for all tasks, reaching state-of-the-art performance for quality estimation at word-, span- and sentence-level granularity. Compared to the previous state-of-the-art COMETKIWI-22, we show large improvements in correlation with human judgements (up to 10 Spearman points). Moreover, we surpass the second-best multilingual submission to the shared-task with up to 3.8 absolute points. 8 authors · Sep 21, 2023
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
- Towards JointUD: Part-of-speech Tagging and Lemmatization using Recurrent Neural Networks This paper describes our submission to CoNLL 2018 UD Shared Task. We have extended an LSTM-based neural network designed for sequence tagging to additionally generate character-level sequences. The network was jointly trained to produce lemmas, part-of-speech tags and morphological features. Sentence segmentation, tokenization and dependency parsing were handled by UDPipe 1.2 baseline. The results demonstrate the viability of the proposed multitask architecture, although its performance still remains far from state-of-the-art. 3 authors · Sep 10, 2018
- Neural Network Acceptability Judgments This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence. We introduce the Corpus of Linguistic Acceptability (CoLA), a set of 10,657 English sentences labeled as grammatical or ungrammatical from published linguistics literature. As baselines, we train several recurrent neural network models on acceptability classification, and find that our models outperform unsupervised models by Lau et al (2016) on CoLA. Error-analysis on specific grammatical phenomena reveals that both Lau et al.'s models and ours learn systematic generalizations like subject-verb-object order. However, all models we test perform far below human level on a wide range of grammatical constructions. 3 authors · May 31, 2018
- SemEval 2019 Shared Task: Cross-lingual Semantic Parsing with UCCA - Call for Participation We announce a shared task on UCCA parsing in English, German and French, and call for participants to submit their systems. UCCA is a cross-linguistically applicable framework for semantic representation, which builds on extensive typological work and supports rapid annotation. UCCA poses a challenge for existing parsing techniques, as it exhibits reentrancy (resulting in DAG structures), discontinuous structures and non-terminal nodes corresponding to complex semantic units. Given the success of recent semantic parsing shared tasks (on SDP and AMR), we expect the task to have a significant contribution to the advancement of UCCA parsing in particular, and semantic parsing in general. Furthermore, existing applications for semantic evaluation that are based on UCCA will greatly benefit from better automatic methods for UCCA parsing. The competition website is https://competitions.codalab.org/competitions/19160 6 authors · May 31, 2018
1 It's All in the Heads: Using Attention Heads as a Baseline for Cross-Lingual Transfer in Commonsense Reasoning Commonsense reasoning is one of the key problems in natural language processing, but the relative scarcity of labeled data holds back the progress for languages other than English. Pretrained cross-lingual models are a source of powerful language-agnostic representations, yet their inherent reasoning capabilities are still actively studied. In this work, we design a simple approach to commonsense reasoning which trains a linear classifier with weights of multi-head attention as features. To evaluate this approach, we create a multilingual Winograd Schema corpus by processing several datasets from prior work within a standardized pipeline and measure cross-lingual generalization ability in terms of out-of-sample performance. The method performs competitively with recent supervised and unsupervised approaches for commonsense reasoning, even when applied to other languages in a zero-shot manner. Also, we demonstrate that most of the performance is given by the same small subset of attention heads for all studied languages, which provides evidence of universal reasoning capabilities in multilingual encoders. 2 authors · Jun 22, 2021
13 NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data Large Language Models (LLMs) have shown impressive abilities in data annotation, opening the way for new approaches to solve classic NLP problems. In this paper, we show how to use LLMs to create NuNER, a compact language representation model specialized in the Named Entity Recognition (NER) task. NuNER can be fine-tuned to solve downstream NER problems in a data-efficient way, outperforming similar-sized foundation models in the few-shot regime and competing with much larger LLMs. We find that the size and entity-type diversity of the pre-training dataset are key to achieving good performance. We view NuNER as a member of the broader family of task-specific foundation models, recently unlocked by LLMs. 5 authors · Feb 23, 2024
- Testing the Limits of Unified Sequence to Sequence LLM Pretraining on Diverse Table Data Tasks Tables stored in databases and tables which are present in web pages and articles account for a large part of semi-structured data that is available on the internet. It then becomes pertinent to develop a modeling approach with large language models (LLMs) that can be used to solve diverse table tasks such as semantic parsing, question answering as well as classification problems. Traditionally, there existed separate models specialized for each task individually. It raises the question of how far can we go to build a unified model that works well on some table tasks without significant degradation on others. To that end, we attempt at creating a shared modeling approach in the pretraining stage with encoder-decoder style LLMs that can cater to diverse tasks. We evaluate our approach that continually pretrains and finetunes different model families of T5 with data from tables and surrounding context, on these downstream tasks at different model scales. Through multiple ablation studies, we observe that our pretraining with self-supervised objectives can significantly boost the performance of the models on these tasks. As an example of one improvement, we observe that the instruction finetuned public models which come specialized on text question answering (QA) and have been trained on table data still have room for improvement when it comes to table specific QA. Our work is the first attempt at studying the advantages of a unified approach to table specific pretraining when scaled from 770M to 11B sequence to sequence models while also comparing the instruction finetuned variants of the models. 2 authors · Oct 1, 2023
1 Deciphering the Impact of Pretraining Data on Large Language Models through Machine Unlearning Through pretraining on a corpus with various sources, Large Language Models (LLMs) have gained impressive performance. However, the impact of each component of the pretraining corpus remains opaque. As a result, the organization of the pretraining corpus is still empirical and may deviate from the optimal. To address this issue, we systematically analyze the impact of 48 datasets from 5 major categories of pretraining data of LLMs and measure their impacts on LLMs using benchmarks about nine major categories of model capabilities. Our analyses provide empirical results about the contribution of multiple corpora on the performances of LLMs, along with their joint impact patterns, including complementary, orthogonal, and correlational relationships. We also identify a set of ``high-impact data'' such as Books that is significantly related to a set of model capabilities. These findings provide insights into the organization of data to support more efficient pretraining of LLMs. 8 authors · Feb 18, 2024
- DiS-ReX: A Multilingual Dataset for Distantly Supervised Relation Extraction Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow extraction of more diverse facts. Very recently, a dataset for multilingual DS-RE has been released. However, our analysis reveals that the proposed dataset exhibits unrealistic characteristics such as 1) lack of sentences that do not express any relation, and 2) all sentences for a given entity pair expressing exactly one relation. We show that these characteristics lead to a gross overestimation of the model performance. In response, we propose a new dataset, DiS-ReX, which alleviates these issues. Our dataset has more than 1.5 million sentences, spanning across 4 languages with 36 relation classes + 1 no relation (NA) class. We also modify the widely used bag attention models by encoding sentences using mBERT and provide the first benchmark results on multilingual DS-RE. Unlike the competing dataset, we show that our dataset is challenging and leaves enough room for future research to take place in this field. 3 authors · Apr 17, 2021
7 Selecting Influential Samples for Long Context Alignment via Homologous Models' Guidance and Contextual Awareness Measurement The expansion of large language models to effectively handle instructions with extremely long contexts has yet to be fully investigated. The primary obstacle lies in constructing a high-quality long instruction-following dataset devised for long context alignment. Existing studies have attempted to scale up the available data volume by synthesizing long instruction-following samples. However, indiscriminately increasing the quantity of data without a well-defined strategy for ensuring data quality may introduce low-quality samples and restrict the final performance. To bridge this gap, we aim to address the unique challenge of long-context alignment, i.e., modeling the long-range dependencies for handling instructions and lengthy input contexts. We propose GATEAU, a novel framework designed to identify the influential and high-quality samples enriched with long-range dependency relations by utilizing crafted Homologous Models' Guidance (HMG) and Contextual Awareness Measurement (CAM). Specifically, HMG attempts to measure the difficulty of generating corresponding responses due to the long-range dependencies, using the perplexity scores of the response from two homologous models with different context windows. Also, the role of CAM is to measure the difficulty of understanding the long input contexts due to long-range dependencies by evaluating whether the model's attention is focused on important segments. Built upon both proposed methods, we select the most challenging samples as the influential data to effectively frame the long-range dependencies, thereby achieving better performance of LLMs. Comprehensive experiments indicate that GATEAU effectively identifies samples enriched with long-range dependency relations and the model trained on these selected samples exhibits better instruction-following and long-context understanding capabilities. 10 authors · Oct 21, 2024 3
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
6 Universal Language Model Fine-tuning for Text Classification Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code. 2 authors · Jan 18, 2018
- XNLP: An Interactive Demonstration System for Universal Structured NLP Structured Natural Language Processing (XNLP) is an important subset of NLP that entails understanding the underlying semantic or syntactic structure of texts, which serves as a foundational component for many downstream applications. Despite certain recent efforts to explore universal solutions for specific categories of XNLP tasks, a comprehensive and effective approach for unifying all XNLP tasks long remains underdeveloped. In the meanwhile, while XNLP demonstration systems are vital for researchers exploring various XNLP tasks, existing platforms can be limited to, e.g., supporting few XNLP tasks, lacking interactivity and universalness. To this end, we propose an advanced XNLP demonstration platform, where we propose leveraging LLM to achieve universal XNLP, with one model for all with high generalizability. Overall, our system advances in multiple aspects, including universal XNLP modeling, high performance, interpretability, scalability, and interactivity, providing a unified platform for exploring diverse XNLP tasks in the community. XNLP is online: https://xnlp.haofei.vip 4 authors · Aug 3, 2023
- JCoLA: Japanese Corpus of Linguistic Acceptability Neural language models have exhibited outstanding performance in a range of downstream tasks. However, there is limited understanding regarding the extent to which these models internalize syntactic knowledge, so that various datasets have recently been constructed to facilitate syntactic evaluation of language models across languages. In this paper, we introduce JCoLA (Japanese Corpus of Linguistic Acceptability), which consists of 10,020 sentences annotated with binary acceptability judgments. Specifically, those sentences are manually extracted from linguistics textbooks, handbooks and journal articles, and split into in-domain data (86 %; relatively simple acceptability judgments extracted from textbooks and handbooks) and out-of-domain data (14 %; theoretically significant acceptability judgments extracted from journal articles), the latter of which is categorized by 12 linguistic phenomena. We then evaluate the syntactic knowledge of 9 different types of Japanese language models on JCoLA. The results demonstrated that several models could surpass human performance for the in-domain data, while no models were able to exceed human performance for the out-of-domain data. Error analyses by linguistic phenomena further revealed that although neural language models are adept at handling local syntactic dependencies like argument structure, their performance wanes when confronted with long-distance syntactic dependencies like verbal agreement and NPI licensing. 3 authors · Sep 22, 2023
- Comparison of biomedical relationship extraction methods and models for knowledge graph creation Biomedical research is growing at such an exponential pace that scientists, researchers, and practitioners are no more able to cope with the amount of published literature in the domain. The knowledge presented in the literature needs to be systematized in such a way that claims and hypotheses can be easily found, accessed, and validated. Knowledge graphs can provide such a framework for semantic knowledge representation from literature. However, in order to build a knowledge graph, it is necessary to extract knowledge as relationships between biomedical entities and normalize both entities and relationship types. In this paper, we present and compare few rule-based and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine learning methods and DistilBERT, PubMedBERT, T5 and SciFive-based models as examples of modern deep learning transformers) methods for scalable relationship extraction from biomedical literature, and for the integration into the knowledge graphs. We examine how resilient are these various methods to unbalanced and fairly small datasets. Our experiments show that transformer-based models handle well both small (due to pre-training on a large dataset) and unbalanced datasets. The best performing model was the PubMedBERT-based model fine-tuned on balanced data, with a reported F1-score of 0.92. DistilBERT-based model followed with F1-score of 0.89, performing faster and with lower resource requirements. BERT-based models performed better then T5-based generative models. 2 authors · Jan 5, 2022
1 NL2TL: Transforming Natural Languages to Temporal Logics using Large Language Models Temporal Logic (TL) can be used to rigorously specify complex high-level specification for systems in many engineering applications. The translation between natural language (NL) and TL has been under-explored due to the lack of dataset and generalizable model across different application domains. In this paper, we propose an accurate and generalizable transformation framework of English instructions from NL to TL, exploring the use of Large Language Models (LLMs) at multiple stages. Our contributions are twofold. First, we develop a framework to create a dataset of NL-TL pairs combining LLMs and human annotation. We publish a dataset with 28K NL-TL pairs. Then, we finetune T5 models on the lifted versions (i.e., the specific Atomic Propositions (AP) are hidden) of the NL and TL. The enhanced generalizability originates from two aspects: 1) Usage of lifted NL-TL characterizes common logical structures, without constraints of specific domains. 2) Application of LLMs in dataset creation largely enhances corpus richness. We test the generalization of trained models on five varied domains. To achieve full NL-TL transformation, we either combine the lifted model with AP recognition task or do the further finetuning on each specific domain. During the further finetuning, our model achieves higher accuracy (>95%) using only <10% training data, compared with the baseline sequence to sequence (Seq2Seq) model. 4 authors · May 12, 2023
1 XGBoost: A Scalable Tree Boosting System Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable end-to-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems. 2 authors · Mar 8, 2016
- A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias Based on the foundation of Large Language Models (LLMs), Multilingual Large Language Models (MLLMs) have been developed to address the challenges of multilingual natural language processing tasks, hoping to achieve knowledge transfer from high-resource to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities. Secondly, we explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks that are crucial for enhancing the cross-lingual capability of MLLMs. Thirdly, we survey the existing studies on multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques. Finally, we discuss existing challenges and point out promising research directions. By demonstrating these aspects, this paper aims to facilitate a deeper understanding of MLLMs and their potentiality in various domains. 6 authors · Apr 1, 2024
13 Model Editing with Canonical Examples We introduce model editing with canonical examples, a setting in which (1) a single learning example is provided per desired behavior, (2) evaluation is performed exclusively out-of-distribution, and (3) deviation from an initial model is strictly limited. A canonical example is a simple instance of good behavior, e.g., The capital of Mauritius is Port Louis) or bad behavior, e.g., An aspect of researchers is coldhearted). The evaluation set contains more complex examples of each behavior (like a paragraph in which the capital of Mauritius is called for.) We create three datasets and modify three more for model editing with canonical examples, covering knowledge-intensive improvements, social bias mitigation, and syntactic edge cases. In our experiments on Pythia language models, we find that LoRA outperforms full finetuning and MEMIT. We then turn to the Backpack language model architecture because it is intended to enable targeted improvement. The Backpack defines a large bank of sense vectors--a decomposition of the different uses of each word--which are weighted and summed to form the output logits of the model. We propose sense finetuning, which selects and finetunes a few (approx 10) sense vectors for each canonical example, and find that it outperforms other finetuning methods, e.g., 4.8% improvement vs 0.3%. Finally, we improve GPT-J-6B by an inference-time ensemble with just the changes from sense finetuning of a 35x smaller Backpack, in one setting outperforming editing GPT-J itself (4.1% vs 1.0%). 6 authors · Feb 8, 2024 1
1 SERENGETI: Massively Multilingual Language Models for Africa Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\href{https://github.com/UBC-NLP/serengeti{https://github.com/UBC-NLP/serengeti}} 4 authors · Dec 21, 2022
- NorBench -- A Benchmark for Norwegian Language Models We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench. 8 authors · May 5, 2023
- Retrieval-Augmented Code Generation for Universal Information Extraction Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework. 11 authors · Nov 6, 2023
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- Large-Scale Contextualised Language Modelling for Norwegian We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience report for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see http://norlm.nlpl.eu 5 authors · Apr 13, 2021
- Building a Family of Data Augmentation Models for Low-cost LLM Fine-tuning on the Cloud Specializing LLMs in various domain-specific tasks has emerged as a critical step towards achieving high performance. However, the construction and annotation of datasets in specific domains are always very costly. Apart from using superior and expensive closed-source LLM APIs to construct datasets, some open-source models have become strong enough to handle dataset construction in many scenarios. Thus, we present a family of data augmentation models designed to significantly improve the efficiency for model fine-tuning. These models, trained based on sufficiently small LLMs, support key functionalities with low inference costs: instruction expansion, instruction refinement, and instruction-response pair expansion. To fulfill this goal, we first construct an automatic data collection system with seed datasets generated from both public repositories and our in-house datasets. This system leverages powerful LLMs to expand, refine and re-write the instructions and responses, incorporating quality assessment techniques. Following this, we introduce the training process of our models, which effectively distills task-solving and text synthesis abilities from teacher LLMs. Finally, we demonstrate how we integrate these functionalities into a machine learning platform to support low-cost LLM fine-tuning from both dataset preparation and training perspectives for users. Experiments and an application study prove the effectiveness of our approach. 4 authors · Dec 6, 2024
- Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: https://github.com/XiaoxinHe/TAPE. 6 authors · May 30, 2023
32 OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs Despite the recent advancements in Large Language Models (LLMs), which have significantly enhanced the generative capabilities for various NLP tasks, LLMs still face limitations in directly handling retrieval tasks. However, many practical applications demand the seamless integration of both retrieval and generation. This paper introduces a novel and efficient One-pass Generation and retrieval framework (OneGen), designed to improve LLMs' performance on tasks that require both generation and retrieval. The proposed framework bridges the traditionally separate training approaches for generation and retrieval by incorporating retrieval tokens generated autoregressively. This enables a single LLM to handle both tasks simultaneously in a unified forward pass. We conduct experiments on two distinct types of composite tasks, RAG and Entity Linking, to validate the pluggability, effectiveness, and efficiency of OneGen in training and inference. Furthermore, our results show that integrating generation and retrieval within the same context preserves the generative capabilities of LLMs while improving retrieval performance. To the best of our knowledge, OneGen is the first to enable LLMs to conduct vector retrieval during the generation. 9 authors · Sep 8, 2024 3
- UniDM: A Unified Framework for Data Manipulation with Large Language Models Designing effective data manipulation methods is a long standing problem in data lakes. Traditional methods, which rely on rules or machine learning models, require extensive human efforts on training data collection and tuning models. Recent methods apply Large Language Models (LLMs) to resolve multiple data manipulation tasks. They exhibit bright benefits in terms of performance but still require customized designs to fit each specific task. This is very costly and can not catch up with the requirements of big data lake platforms. In this paper, inspired by the cross-task generality of LLMs on NLP tasks, we pave the first step to design an automatic and general solution to tackle with data manipulation tasks. We propose UniDM, a unified framework which establishes a new paradigm to process data manipulation tasks using LLMs. UniDM formalizes a number of data manipulation tasks in a unified form and abstracts three main general steps to solve each task. We develop an automatic context retrieval to allow the LLMs to retrieve data from data lakes, potentially containing evidence and factual information. For each step, we design effective prompts to guide LLMs to produce high quality results. By our comprehensive evaluation on a variety of benchmarks, our UniDM exhibits great generality and state-of-the-art performance on a wide variety of data manipulation tasks. 11 authors · May 10, 2024
- ARBERT & MARBERT: Deep Bidirectional Transformers for Arabic Pre-trained language models (LMs) are currently integral to many natural language processing systems. Although multilingual LMs were also introduced to serve many languages, these have limitations such as being costly at inference time and the size and diversity of non-English data involved in their pre-training. We remedy these issues for a collection of diverse Arabic varieties by introducing two powerful deep bidirectional transformer-based models, ARBERT and MARBERT. To evaluate our models, we also introduce ARLUE, a new benchmark for multi-dialectal Arabic language understanding evaluation. ARLUE is built using 42 datasets targeting six different task clusters, allowing us to offer a series of standardized experiments under rich conditions. When fine-tuned on ARLUE, our models collectively achieve new state-of-the-art results across the majority of tasks (37 out of 48 classification tasks, on the 42 datasets). Our best model acquires the highest ARLUE score (77.40) across all six task clusters, outperforming all other models including XLM-R Large (~ 3.4 x larger size). Our models are publicly available at https://github.com/UBC-NLP/marbert and ARLUE will be released through the same repository. 3 authors · Dec 27, 2020
28 Adapters: A Unified Library for Parameter-Efficient and Modular Transfer Learning We introduce Adapters, an open-source library that unifies parameter-efficient and modular transfer learning in large language models. By integrating 10 diverse adapter methods into a unified interface, Adapters offers ease of use and flexible configuration. Our library allows researchers and practitioners to leverage adapter modularity through composition blocks, enabling the design of complex adapter setups. We demonstrate the library's efficacy by evaluating its performance against full fine-tuning on various NLP tasks. Adapters provides a powerful tool for addressing the challenges of conventional fine-tuning paradigms and promoting more efficient and modular transfer learning. The library is available via https://adapterhub.ml/adapters. 10 authors · Nov 18, 2023 3
- Towards a Unified Multi-Dimensional Evaluator for Text Generation Multi-dimensional evaluation is the dominant paradigm for human evaluation in Natural Language Generation (NLG), i.e., evaluating the generated text from multiple explainable dimensions, such as coherence and fluency. However, automatic evaluation in NLG is still dominated by similarity-based metrics, and we lack a reliable framework for a more comprehensive evaluation of advanced models. In this paper, we propose a unified multi-dimensional evaluator UniEval for NLG. We re-frame NLG evaluation as a Boolean Question Answering (QA) task, and by guiding the model with different questions, we can use one evaluator to evaluate from multiple dimensions. Furthermore, thanks to the unified Boolean QA format, we are able to introduce an intermediate learning phase that enables UniEval to incorporate external knowledge from multiple related tasks and gain further improvement. Experiments on three typical NLG tasks show that UniEval correlates substantially better with human judgments than existing metrics. Specifically, compared to the top-performing unified evaluators, UniEval achieves a 23% higher correlation on text summarization, and over 43% on dialogue response generation. Also, UniEval demonstrates a strong zero-shot learning ability for unseen evaluation dimensions and tasks. Source code, data and all pre-trained evaluators are available on our GitHub repository (https://github.com/maszhongming/UniEval). 9 authors · Oct 13, 2022
15 Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources. 5 authors · Dec 5, 2023
1 On Eliciting Syntax from Language Models via Hashing Unsupervised parsing, also known as grammar induction, aims to infer syntactic structure from raw text. Recently, binary representation has exhibited remarkable information-preserving capabilities at both lexicon and syntax levels. In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text, relying solely on the implicitly induced grammars within models. To achieve this, we upgrade the bit-level CKY from zero-order to first-order to encode the lexicon and syntax in a unified binary representation space, switch training from supervised to unsupervised under the contrastive hashing framework, and introduce a novel loss function to impose stronger yet balanced alignment signals. Our model shows competitive performance on various datasets, therefore, we claim that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost. 2 authors · Oct 5, 2024
- When Large Language Models Meet Vector Databases: A Survey This survey explores the synergistic potential of Large Language Models (LLMs) and Vector Databases (VecDBs), a burgeoning but rapidly evolving research area. With the proliferation of LLMs comes a host of challenges, including hallucinations, outdated knowledge, prohibitive commercial application costs, and memory issues. VecDBs emerge as a compelling solution to these issues by offering an efficient means to store, retrieve, and manage the high-dimensional vector representations intrinsic to LLM operations. Through this nuanced review, we delineate the foundational principles of LLMs and VecDBs and critically analyze their integration's impact on enhancing LLM functionalities. This discourse extends into a discussion on the speculative future developments in this domain, aiming to catalyze further research into optimizing the confluence of LLMs and VecDBs for advanced data handling and knowledge extraction capabilities. 8 authors · Jan 30, 2024
- Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs Deploying large language models (LLMs) of several billion parameters can be impractical in most industrial use cases due to constraints such as cost, latency limitations, and hardware accessibility. Knowledge distillation (KD) offers a solution by compressing knowledge from resource-intensive large models to smaller ones. Various strategies exist, some relying on the text generated by the teacher model and optionally utilizing his logits to enhance learning. However, these methods based on logits often require both teacher and student models to share the same tokenizer, limiting their applicability across different LLM families. In this paper, we introduce Universal Logit Distillation (ULD) loss, grounded in optimal transport, to address this limitation. Our experimental results demonstrate the effectiveness of ULD loss in enabling distillation across models with different architectures and tokenizers, paving the way to a more widespread use of distillation techniques. 4 authors · Feb 19, 2024
- Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective We propose a new paradigm for zero-shot learners that is format agnostic, i.e., it is compatible with any format and applicable to a list of language tasks, such as text classification, commonsense reasoning, coreference resolution, and sentiment analysis. Zero-shot learning aims to train a model on a given task such that it can address new learning tasks without any additional training. Our approach converts zero-shot learning into multiple-choice tasks, avoiding problems in commonly used large-scale generative models such as FLAN. It not only adds generalization ability to models but also significantly reduces the number of parameters. Our method shares the merits of efficient training and deployment. Our approach shows state-of-the-art performance on several benchmarks and produces satisfactory results on tasks such as natural language inference and text classification. Our model achieves this success with only 235M parameters, which is substantially smaller than state-of-the-art models with billions of parameters. The code and pre-trained models are available at https://github.com/IDEA-CCNL/Fengshenbang-LM . 9 authors · Oct 16, 2022
- EPIE Dataset: A Corpus For Possible Idiomatic Expressions Idiomatic expressions have always been a bottleneck for language comprehension and natural language understanding, specifically for tasks like Machine Translation(MT). MT systems predominantly produce literal translations of idiomatic expressions as they do not exhibit generic and linguistically deterministic patterns which can be exploited for comprehension of the non-compositional meaning of the expressions. These expressions occur in parallel corpora used for training, but due to the comparatively high occurrences of the constituent words of idiomatic expressions in literal context, the idiomatic meaning gets overpowered by the compositional meaning of the expression. State of the art Metaphor Detection Systems are able to detect non-compositional usage at word level but miss out on idiosyncratic phrasal idiomatic expressions. This creates a dire need for a dataset with a wider coverage and higher occurrence of commonly occurring idiomatic expressions, the spans of which can be used for Metaphor Detection. With this in mind, we present our English Possible Idiomatic Expressions(EPIE) corpus containing 25206 sentences labelled with lexical instances of 717 idiomatic expressions. These spans also cover literal usages for the given set of idiomatic expressions. We also present the utility of our dataset by using it to train a sequence labelling module and testing on three independent datasets with high accuracy, precision and recall scores. 2 authors · Jun 16, 2020
- LinguAlchemy: Fusing Typological and Geographical Elements for Unseen Language Generalization Pretrained language models (PLMs) have shown remarkable generalization toward multiple tasks and languages. Nonetheless, the generalization of PLMs towards unseen languages is poor, resulting in significantly worse language performance, or even generating nonsensical responses that are comparable to a random baseline. This limitation has been a longstanding problem of PLMs raising the problem of diversity and equal access to language modeling technology. In this work, we solve this limitation by introducing LinguAlchemy, a regularization technique that incorporates various aspects of languages covering typological, geographical, and phylogenetic constraining the resulting representation of PLMs to better characterize the corresponding linguistics constraints. LinguAlchemy significantly improves the accuracy performance of mBERT and XLM-R on unseen languages by ~18% and ~2%, respectively compared to fully finetuned models and displaying a high degree of unseen language generalization. We further introduce AlchemyScale and AlchemyTune, extension of LinguAlchemy which adjusts the linguistic regularization weights automatically, alleviating the need for hyperparameter search. LinguAlchemy enables better cross-lingual generalization to unseen languages which is vital for better inclusivity and accessibility of PLMs. 5 authors · Jan 11, 2024
- LIMIT-BERT : Linguistic Informed Multi-Task BERT In this paper, we present a Linguistic Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistic tasks by Multi-Task Learning (MTL). LIMIT-BERT includes five key linguistic syntax and semantics tasks: Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, span and dependency semantic role labeling (SRL). Besides, LIMIT-BERT adopts linguistics mask strategy: Syntactic and Semantic Phrase Masking which mask all of the tokens corresponding to a syntactic/semantic phrase. Different from recent Multi-Task Deep Neural Networks (MT-DNN) (Liu et al., 2019), our LIMIT-BERT is linguistically motivated and learning in a semi-supervised method which provides large amounts of linguistic-task data as same as BERT learning corpus. As a result, LIMIT-BERT not only improves linguistic tasks performance but also benefits from a regularization effect and linguistic information that leads to more general representations to help adapt to new tasks and domains. LIMIT-BERT obtains new state-of-the-art or competitive results on both span and dependency semantic parsing on Propbank benchmarks and both dependency and constituent syntactic parsing on Penn Treebank. 4 authors · Oct 31, 2019
2 LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding Although large language models (LLMs) demonstrate impressive performance for many language tasks, most of them can only handle texts a few thousand tokens long, limiting their applications on longer sequence inputs, such as books, reports, and codebases. Recent works have proposed methods to improve LLMs' long context capabilities by extending context windows and more sophisticated memory mechanisms. However, comprehensive benchmarks tailored for evaluating long context understanding are lacking. In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding. LongBench comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese). These tasks cover key long-text application areas including single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code completion. All datasets in LongBench are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Upon comprehensive evaluation of 8 LLMs on LongBench, we find that: (1) Commercial model (GPT-3.5-Turbo-16k) outperforms other open-sourced models, but still struggles on longer contexts. (2) Scaled position embedding and fine-tuning on longer sequences lead to substantial improvement on long context understanding. (3) Context compression technique such as retrieval brings improvement for model with weak ability on long contexts, but the performance still lags behind models that have strong long context understanding capability. The code and datasets are available at https://github.com/THUDM/LongBench. 13 authors · Aug 28, 2023
- LLM Chain Ensembles for Scalable and Accurate Data Annotation The ability of large language models (LLMs) to perform zero-shot classification makes them viable solutions for data annotation in rapidly evolving domains where quality labeled data is often scarce and costly to obtain. However, the large-scale deployment of LLMs can be prohibitively expensive. This paper introduces an LLM chain ensemble methodology that aligns multiple LLMs in a sequence, routing data subsets to subsequent models based on classification uncertainty. This approach leverages the strengths of individual LLMs within a broader system, allowing each model to handle data points where it exhibits the highest confidence, while forwarding more complex cases to potentially more robust models. Our results show that the chain ensemble method often exceeds the performance of the best individual model in the chain and achieves substantial cost savings, making LLM chain ensembles a practical and efficient solution for large-scale data annotation challenges. 5 authors · Oct 16, 2024
- LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in https://github.com/zjunlp/AutoKG. 9 authors · May 22, 2023
- Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems. 2 authors · Oct 5, 2020
- Text-based NP Enrichment Understanding the relations between entities denoted by NPs in a text is a critical part of human-like natural language understanding. However, only a fraction of such relations is covered by standard NLP tasks and benchmarks nowadays. In this work, we propose a novel task termed text-based NP enrichment (TNE), in which we aim to enrich each NP in a text with all the preposition-mediated relations -- either explicit or implicit -- that hold between it and other NPs in the text. The relations are represented as triplets, each denoted by two NPs related via a preposition. Humans recover such relations seamlessly, while current state-of-the-art models struggle with them due to the implicit nature of the problem. We build the first large-scale dataset for the problem, provide the formal framing and scope of annotation, analyze the data, and report the results of fine-tuned language models on the task, demonstrating the challenge it poses to current technology. A webpage with a data-exploration UI, a demo, and links to the code, models, and leaderboard, to foster further research into this challenging problem can be found at: yanaiela.github.io/TNE/. 4 authors · Sep 24, 2021
1 Scene Graph Modification Based on Natural Language Commands Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new user's command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem. 8 authors · Oct 6, 2020
1 Revisiting a Pain in the Neck: Semantic Phrase Processing Benchmark for Language Models We introduce LexBench, a comprehensive evaluation suite enabled to test language models (LMs) on ten semantic phrase processing tasks. Unlike prior studies, it is the first work to propose a framework from the comparative perspective to model the general semantic phrase (i.e., lexical collocation) and three fine-grained semantic phrases, including idiomatic expression, noun compound, and verbal construction. Thanks to \ourbenchmark, we assess the performance of 15 LMs across model architectures and parameter scales in classification, extraction, and interpretation tasks. Through the experiments, we first validate the scaling law and find that, as expected, large models excel better than the smaller ones in most tasks. Second, we investigate further through the scaling semantic relation categorization and find that few-shot LMs still lag behind vanilla fine-tuned models in the task. Third, through human evaluation, we find that the performance of strong models is comparable to the human level regarding semantic phrase processing. Our benchmarking findings can serve future research aiming to improve the generic capability of LMs on semantic phrase comprehension. Our source code and data are available at https://github.com/jacklanda/LexBench 4 authors · May 5, 2024
1 SWEb: A Large Web Dataset for the Scandinavian Languages This paper presents the hitherto largest pretraining dataset for the Scandinavian languages: the Scandinavian WEb (SWEb), comprising over one trillion tokens. The paper details the collection and processing pipeline, and introduces a novel model-based text extractor that significantly reduces complexity in comparison with rule-based approaches. We also introduce a new cloze-style benchmark for evaluating language models in Swedish, and use this test to compare models trained on the SWEb data to models trained on FineWeb, with competitive results. All data, models and code are shared openly. 7 authors · Oct 6, 2024
2 OPT: Open Pre-trained Transformer Language Models Large language models, which are often trained for hundreds of thousands of compute days, have shown remarkable capabilities for zero- and few-shot learning. Given their computational cost, these models are difficult to replicate without significant capital. For the few that are available through APIs, no access is granted to the full model weights, making them difficult to study. We present Open Pre-trained Transformers (OPT), a suite of decoder-only pre-trained transformers ranging from 125M to 175B parameters, which we aim to fully and responsibly share with interested researchers. We show that OPT-175B is comparable to GPT-3, while requiring only 1/7th the carbon footprint to develop. We are also releasing our logbook detailing the infrastructure challenges we faced, along with code for experimenting with all of the released models. 19 authors · May 2, 2022
1 KLUE: Korean Language Understanding Evaluation We introduce Korean Language Understanding Evaluation (KLUE) benchmark. KLUE is a collection of 8 Korean natural language understanding (NLU) tasks, including Topic Classification, SemanticTextual Similarity, Natural Language Inference, Named Entity Recognition, Relation Extraction, Dependency Parsing, Machine Reading Comprehension, and Dialogue State Tracking. We build all of the tasks from scratch from diverse source corpora while respecting copyrights, to ensure accessibility for anyone without any restrictions. With ethical considerations in mind, we carefully design annotation protocols. Along with the benchmark tasks and data, we provide suitable evaluation metrics and fine-tuning recipes for pretrained language models for each task. We furthermore release the pretrained language models (PLM), KLUE-BERT and KLUE-RoBERTa, to help reproducing baseline models on KLUE and thereby facilitate future research. We make a few interesting observations from the preliminary experiments using the proposed KLUE benchmark suite, already demonstrating the usefulness of this new benchmark suite. First, we find KLUE-RoBERTa-large outperforms other baselines, including multilingual PLMs and existing open-source Korean PLMs. Second, we see minimal degradation in performance even when we replace personally identifiable information from the pretraining corpus, suggesting that privacy and NLU capability are not at odds with each other. Lastly, we find that using BPE tokenization in combination with morpheme-level pre-tokenization is effective in tasks involving morpheme-level tagging, detection and generation. In addition to accelerating Korean NLP research, our comprehensive documentation on creating KLUE will facilitate creating similar resources for other languages in the future. KLUE is available at https://klue-benchmark.com. 31 authors · May 20, 2021
2 NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks. 8 authors · Dec 3, 2023 1
- PyABSA: A Modularized Framework for Reproducible Aspect-based Sentiment Analysis The advancement of aspect-based sentiment analysis (ABSA) has urged the lack of a user-friendly framework that can largely lower the difficulty of reproducing state-of-the-art ABSA performance, especially for beginners. To meet the demand, we present \our, a modularized framework built on PyTorch for reproducible ABSA. To facilitate ABSA research, PyABSA supports several ABSA subtasks, including aspect term extraction, aspect sentiment classification, and end-to-end aspect-based sentiment analysis. Concretely, PyABSA integrates 29 models and 26 datasets. With just a few lines of code, the result of a model on a specific dataset can be reproduced. With a modularized design, PyABSA can also be flexiblely extended to considered models, datasets, and other related tasks. Besides, PyABSA highlights its data augmentation and annotation features, which significantly address data scarity. All are welcome to have a try at https://github.com/yangheng95/PyABSA. 2 authors · Aug 2, 2022
- Calc-X: Enriching Arithmetical Chain-of-Thoughts Datasets by Interaction with Symbolic Systems This report overviews our ongoing work in enriching chain-of-thoughts datasets requiring arithmetical reasoning with the integration of non-parametric components, such as a calculator. We conduct an analysis of prominent relevant datasets such as GSM8K, Ape210K, AQuA-RAT, and MathQA and propose a machine-processable HTML-like format specifically tailored for working with semi-structured chains. By converting the datasets into this unified format, we enable the effective integration of large language models and symbolic systems, empowering them to tackle arithmetical reasoning tasks more efficiently. 2 authors · May 24, 2023
10 TaxoLLaMA: WordNet-based Model for Solving Multiple Lexical Sematic Tasks In this paper, we explore the capabilities of LLMs in capturing lexical-semantic knowledge from WordNet on the example of the LLaMA-2-7b model and test it on multiple lexical semantic tasks. As the outcome of our experiments, we present TaxoLLaMA, the everything-in-one model, lightweight due to 4-bit quantization and LoRA. It achieves 11 SotA results, 4 top-2 results out of 16 tasks for the Taxonomy Enrichment, Hypernym Discovery, Taxonomy Construction, and Lexical Entailment tasks. Moreover, it demonstrates very strong zero-shot performance on Lexical Entailment and Taxonomy Construction with no fine-tuning. We also explore its hidden multilingual and domain adaptation capabilities with a little tuning or few-shot learning. All datasets, code, and model are available online at https://github.com/VityaVitalich/TaxoLLaMA 5 authors · Mar 14, 2024
14 InkubaLM: A small language model for low-resource African languages High-resource language models often fall short in the African context, where there is a critical need for models that are efficient, accessible, and locally relevant, even amidst significant computing and data constraints. This paper introduces InkubaLM, a small language model with 0.4 billion parameters, which achieves performance comparable to models with significantly larger parameter counts and more extensive training data on tasks such as machine translation, question-answering, AfriMMLU, and the AfriXnli task. Notably, InkubaLM outperforms many larger models in sentiment analysis and demonstrates remarkable consistency across multiple languages. This work represents a pivotal advancement in challenging the conventional paradigm that effective language models must rely on substantial resources. Our model and datasets are publicly available \url{https://huggingface.co./lelapa} to encourage research and development on low-resource languages. 11 authors · Aug 30, 2024 2
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm. 10 authors · Jul 15, 2020
5 Gorilla: Large Language Model Connected with Massive APIs Large Language Models (LLMs) have seen an impressive wave of advances recently, with models now excelling in a variety of tasks, such as mathematical reasoning and program synthesis. However, their potential to effectively use tools via API calls remains unfulfilled. This is a challenging task even for today's state-of-the-art LLMs such as GPT-4, largely due to their inability to generate accurate input arguments and their tendency to hallucinate the wrong usage of an API call. We release Gorilla, a finetuned LLaMA-based model that surpasses the performance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla demonstrates a strong capability to adapt to test-time document changes, enabling flexible user updates or version changes. It also substantially mitigates the issue of hallucination, commonly encountered when prompting LLMs directly. To evaluate the model's ability, we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub, and TensorHub APIs. The successful integration of the retrieval system with Gorilla demonstrates the potential for LLMs to use tools more accurately, keep up with frequently updated documentation, and consequently increase the reliability and applicability of their outputs. Gorilla's code, model, data, and demo are available at https://gorilla.cs.berkeley.edu 4 authors · May 24, 2023
- SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets. 3 authors · Dec 21, 2024
- BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP. 6 authors · Nov 10, 2022
- End-To-End Memory Networks We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results. 4 authors · Mar 30, 2015
- Bilex Rx: Lexical Data Augmentation for Massively Multilingual Machine Translation Neural machine translation (NMT) has progressed rapidly over the past several years, and modern models are able to achieve relatively high quality using only monolingual text data, an approach dubbed Unsupervised Machine Translation (UNMT). However, these models still struggle in a variety of ways, including aspects of translation that for a human are the easiest - for instance, correctly translating common nouns. This work explores a cheap and abundant resource to combat this problem: bilingual lexica. We test the efficacy of bilingual lexica in a real-world set-up, on 200-language translation models trained on web-crawled text. We present several findings: (1) using lexical data augmentation, we demonstrate sizable performance gains for unsupervised translation; (2) we compare several families of data augmentation, demonstrating that they yield similar improvements, and can be combined for even greater improvements; (3) we demonstrate the importance of carefully curated lexica over larger, noisier ones, especially with larger models; and (4) we compare the efficacy of multilingual lexicon data versus human-translated parallel data. Finally, we open-source GATITOS (available at https://github.com/google-research/url-nlp/tree/main/gatitos), a new multilingual lexicon for 26 low-resource languages, which had the highest performance among lexica in our experiments. 4 authors · Mar 27, 2023
- Assessing the Unitary RNN as an End-to-End Compositional Model of Syntax We show that both an LSTM and a unitary-evolution recurrent neural network (URN) can achieve encouraging accuracy on two types of syntactic patterns: context-free long distance agreement, and mildly context-sensitive cross serial dependencies. This work extends recent experiments on deeply nested context-free long distance dependencies, with similar results. URNs differ from LSTMs in that they avoid non-linear activation functions, and they apply matrix multiplication to word embeddings encoded as unitary matrices. This permits them to retain all information in the processing of an input string over arbitrary distances. It also causes them to satisfy strict compositionality. URNs constitute a significant advance in the search for explainable models in deep learning applied to NLP. 2 authors · Aug 11, 2022
34 RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose RetroLLM, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at https://github.com/sunnynexus/RetroLLM. 7 authors · Dec 16, 2024 4
2 Relation-aware Ensemble Learning for Knowledge Graph Embedding Knowledge graph (KG) embedding is a fundamental task in natural language processing, and various methods have been proposed to explore semantic patterns in distinctive ways. In this paper, we propose to learn an ensemble by leveraging existing methods in a relation-aware manner. However, exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods. To address this issue, we propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently. This algorithm has the same computation cost as general ensemble methods but with much better performance. Experimental results on benchmark datasets demonstrate the effectiveness of the proposed method in efficiently searching relation-aware ensemble weights and achieving state-of-the-art embedding performance. The code is public at https://github.com/LARS-research/RelEns. 8 authors · Oct 13, 2023
21 Learning Universal Predictors Meta-learning has emerged as a powerful approach to train neural networks to learn new tasks quickly from limited data. Broad exposure to different tasks leads to versatile representations enabling general problem solving. But, what are the limits of meta-learning? In this work, we explore the potential of amortizing the most powerful universal predictor, namely Solomonoff Induction (SI), into neural networks via leveraging meta-learning to its limits. We use Universal Turing Machines (UTMs) to generate training data used to expose networks to a broad range of patterns. We provide theoretical analysis of the UTM data generation processes and meta-training protocols. We conduct comprehensive experiments with neural architectures (e.g. LSTMs, Transformers) and algorithmic data generators of varying complexity and universality. Our results suggest that UTM data is a valuable resource for meta-learning, and that it can be used to train neural networks capable of learning universal prediction strategies. 11 authors · Jan 26, 2024 1
5 MMM: Multilingual Mutual Reinforcement Effect Mix Datasets & Test with Open-domain Information Extraction Large Language Models The Mutual Reinforcement Effect (MRE) represents a promising avenue in information extraction and multitasking research. Nevertheless, its applicability has been constrained due to the exclusive availability of MRE mix datasets in Japanese, thereby limiting comprehensive exploration by the global research community. To address this limitation, we introduce a Multilingual MRE mix dataset (MMM) that encompasses 21 sub-datasets in English, Japanese, and Chinese. In this paper, we also propose a method for dataset translation assisted by Large Language Models (LLMs), which significantly reduces the manual annotation time required for dataset construction by leveraging LLMs to translate the original Japanese datasets. Additionally, we have enriched the dataset by incorporating open-domain Named Entity Recognition (NER) and sentence classification tasks. Utilizing this expanded dataset, we developed a unified input-output framework to train an Open-domain Information Extraction Large Language Model (OIELLM). The OIELLM model demonstrates the capability to effectively process novel MMM datasets, exhibiting significant improvements in performance. 11 authors · Jul 15, 2024 2
3 OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages We present OpenNER 1.0, a standardized collection of openly available named entity recognition (NER) datasets. OpenNER contains 34 datasets spanning 51 languages, annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation, map entity type names to be more consistent across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline models using three pretrained multilingual language models to compare the performance of recent models and facilitate future research in NER. 5 authors · Dec 12, 2024 2
7 NRGBoost: Energy-Based Generative Boosted Trees Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second order boosting implemented in popular packages like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural network based models for sampling. 1 authors · Oct 4, 2024 2
- Hierarchical Softmax for End-to-End Low-resource Multilingual Speech Recognition Low-resource speech recognition has been long-suffering from insufficient training data. In this paper, we propose an approach that leverages neighboring languages to improve low-resource scenario performance, founded on the hypothesis that similar linguistic units in neighboring languages exhibit comparable term frequency distributions, which enables us to construct a Huffman tree for performing multilingual hierarchical Softmax decoding. This hierarchical structure enables cross-lingual knowledge sharing among similar tokens, thereby enhancing low-resource training outcomes. Empirical analyses demonstrate that our method is effective in improving the accuracy and efficiency of low-resource speech recognition. 11 authors · Apr 8, 2022
- Structurally Diverse Sampling for Sample-Efficient Training and Comprehensive Evaluation A growing body of research has demonstrated the inability of NLP models to generalize compositionally and has tried to alleviate it through specialized architectures, training schemes, and data augmentation, among other approaches. In this work, we study a different approach: training on instances with diverse structures. We propose a model-agnostic algorithm for subsampling such sets of instances from a labeled instance pool with structured outputs. Evaluating on both compositional template splits and traditional IID splits of 5 semantic parsing datasets of varying complexity, we show that structurally diverse training using our algorithm leads to comparable or better generalization than prior algorithms in 9 out of 10 dataset-split type pairs. In general, we find structural diversity to consistently improve sample efficiency compared to random train sets. Moreover, we show that structurally diverse sampling yields comprehensive test sets that are a lot more challenging than IID test sets. Finally, we provide two explanations for improved generalization from diverse train sets: 1) improved coverage of output substructures, and 2) a reduction in spurious correlations between these substructures. 3 authors · Mar 16, 2022
- PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data In natural language processing (NLP), there is a need for more resources in Portuguese, since much of the data used in the state-of-the-art research is in other languages. In this paper, we pretrain a T5 model on the BrWac corpus, an extensive collection of web pages in Portuguese, and evaluate its performance against other Portuguese pretrained models and multilingual models on three different tasks. We show that our Portuguese pretrained models have significantly better performance over the original T5 models. Moreover, we demonstrate the positive impact of using a Portuguese vocabulary. Our code and models are available at https://github.com/unicamp-dl/PTT5. 5 authors · Aug 20, 2020
1 On the Effectiveness of the Pooling Methods for Biomedical Relation Extraction with Deep Learning Deep learning models have achieved state-of-the-art performances on many relation extraction datasets. A common element in these deep learning models involves the pooling mechanisms where a sequence of hidden vectors is aggregated to generate a single representation vector, serving as the features to perform prediction for RE. Unfortunately, the models in the literature tend to employ different strategies to perform pooling for RE, leading to the challenge to determine the best pooling mechanism for this problem, especially in the biomedical domain. In order to answer this question, in this work, we conduct a comprehensive study to evaluate the effectiveness of different pooling mechanisms for the deep learning models in biomedical RE. The experimental results suggest that dependency-based pooling is the best pooling strategy for RE in the biomedical domain, yielding the state-of-the-art performance on two benchmark datasets for this problem. 3 authors · Nov 4, 2019