6 Ruby Teaming: Improving Quality Diversity Search with Memory for Automated Red Teaming We propose Ruby Teaming, a method that improves on Rainbow Teaming by including a memory cache as its third dimension. The memory dimension provides cues to the mutator to yield better-quality prompts, both in terms of attack success rate (ASR) and quality diversity. The prompt archive generated by Ruby Teaming has an ASR of 74%, which is 20% higher than the baseline. In terms of quality diversity, Ruby Teaming outperforms Rainbow Teaming by 6% and 3% on Shannon's Evenness Index (SEI) and Simpson's Diversity Index (SDI), respectively. 3 authors · Jun 17, 2024 1
- Understanding SSIM The use of the structural similarity index (SSIM) is widespread. For almost two decades, it has played a major role in image quality assessment in many different research disciplines. Clearly, its merits are indisputable in the research community. However, little deep scrutiny of this index has been performed. Contrary to popular belief, there are some interesting properties of SSIM that merit such scrutiny. In this paper, we analyze the mathematical factors of SSIM and show that it can generate results, in both synthetic and realistic use cases, that are unexpected, sometimes undefined, and nonintuitive. As a consequence, assessing image quality based on SSIM can lead to incorrect conclusions and using SSIM as a loss function for deep learning can guide neural network training in the wrong direction. 2 authors · Jun 24, 2020