Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultilingual Sequence-to-Sequence Models for Hebrew NLP
Recent work attributes progress in NLP to large language models (LMs) with increased model size and large quantities of pretraining data. Despite this, current state-of-the-art LMs for Hebrew are both under-parameterized and under-trained compared to LMs in other languages. Additionally, previous work on pretrained Hebrew LMs focused on encoder-only models. While the encoder-only architecture is beneficial for classification tasks, it does not cater well for sub-word prediction tasks, such as Named Entity Recognition, when considering the morphologically rich nature of Hebrew. In this paper we argue that sequence-to-sequence generative architectures are more suitable for LLMs in the case of morphologically rich languages (MRLs) such as Hebrew. We demonstrate that by casting tasks in the Hebrew NLP pipeline as text-to-text tasks, we can leverage powerful multilingual, pretrained sequence-to-sequence models as mT5, eliminating the need for a specialized, morpheme-based, separately fine-tuned decoder. Using this approach, our experiments show substantial improvements over previously published results on existing Hebrew NLP benchmarks. These results suggest that multilingual sequence-to-sequence models present a promising building block for NLP for MRLs.
AlephBERT:A Hebrew Large Pre-Trained Language Model to Start-off your Hebrew NLP Application With
Large Pre-trained Language Models (PLMs) have become ubiquitous in the development of language understanding technology and lie at the heart of many artificial intelligence advances. While advances reported for English using PLMs are unprecedented, reported advances using PLMs in Hebrew are few and far between. The problem is twofold. First, Hebrew resources available for training NLP models are not at the same order of magnitude as their English counterparts. Second, there are no accepted tasks and benchmarks to evaluate the progress of Hebrew PLMs on. In this work we aim to remedy both aspects. First, we present AlephBERT, a large pre-trained language model for Modern Hebrew, which is trained on larger vocabulary and a larger dataset than any Hebrew PLM before. Second, using AlephBERT we present new state-of-the-art results on multiple Hebrew tasks and benchmarks, including: Segmentation, Part-of-Speech Tagging, full Morphological Tagging, Named-Entity Recognition and Sentiment Analysis. We make our AlephBERT model publicly available, providing a single point of entry for the development of Hebrew NLP applications.
DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew
We present DictaBERT, a new state-of-the-art pre-trained BERT model for modern Hebrew, outperforming existing models on most benchmarks. Additionally, we release two fine-tuned versions of the model, designed to perform two specific foundational tasks in the analysis of Hebrew texts: prefix segmentation and morphological tagging. These fine-tuned models allow any developer to perform prefix segmentation and morphological tagging of a Hebrew sentence with a single call to a HuggingFace model, without the need to integrate any additional libraries or code. In this paper we describe the details of the training as well and the results on the different benchmarks. We release the models to the community, along with sample code demonstrating their use. We release these models as part of our goal to help further research and development in Hebrew NLP.
MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark
Recent advancements in large language models (LLMs) have showcased significant improvements in mathematics. However, traditional math benchmarks like GSM8k offer a unidimensional perspective, falling short in providing a holistic assessment of the LLMs' math capabilities. To address this gap, we introduce MathBench, a new benchmark that rigorously assesses the mathematical capabilities of large language models. MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills. The benchmark progresses through five distinct stages, from basic arithmetic to college mathematics, and is structured to evaluate models at various depths of knowledge. Each stage includes theoretical questions and application problems, allowing us to measure a model's mathematical proficiency and its ability to apply concepts in practical scenarios. MathBench aims to enhance the evaluation of LLMs' mathematical abilities, providing a nuanced view of their knowledge understanding levels and problem solving skills in a bilingual context. The project is released at https://github.com/open-compass/MathBench .
How Should I Build A Benchmark? Revisiting Code-Related Benchmarks For LLMs
Various benchmarks have been proposed to assess the performance of large language models (LLMs) in different coding scenarios. We refer to them as code-related benchmarks. However, there are no systematic guidelines by which such a benchmark should be developed to ensure its quality, reliability, and reproducibility. We propose How2Bench, which is comprised of a 55- 55-criteria checklist as a set of guidelines to govern the development of code-related benchmarks comprehensively. Using HOW2BENCH, we profiled 274 benchmarks released within the past decade and found concerning issues. Nearly 70% of the benchmarks did not take measures for data quality assurance; over 10% did not even open source or only partially open source. Many highly cited benchmarks have loopholes, including duplicated samples, incorrect reference codes/tests/prompts, and unremoved sensitive/confidential information. Finally, we conducted a human study involving 49 participants, which revealed significant gaps in awareness of the importance of data quality, reproducibility, and transparency.
A Second Wave of UD Hebrew Treebanking and Cross-Domain Parsing
Foundational Hebrew NLP tasks such as segmentation, tagging and parsing, have relied to date on various versions of the Hebrew Treebank (HTB, Sima'an et al. 2001). However, the data in HTB, a single-source newswire corpus, is now over 30 years old, and does not cover many aspects of contemporary Hebrew on the web. This paper presents a new, freely available UD treebank of Hebrew stratified from a range of topics selected from Hebrew Wikipedia. In addition to introducing the corpus and evaluating the quality of its annotations, we deploy automatic validation tools based on grew (Guillaume, 2021), and conduct the first cross domain parsing experiments in Hebrew. We obtain new state-of-the-art (SOTA) results on UD NLP tasks, using a combination of the latest language modelling and some incremental improvements to existing transformer based approaches. We also release a new version of the UD HTB matching annotation scheme updates from our new corpus.
Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
How can we test AI performance? This question seems trivial, but it isn't. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain.
BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models
Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
Advancing the Evaluation of Traditional Chinese Language Models: Towards a Comprehensive Benchmark Suite
The evaluation of large language models is an essential task in the field of language understanding and generation. As language models continue to advance, the need for effective benchmarks to assess their performance has become imperative. In the context of Traditional Chinese, there is a scarcity of comprehensive and diverse benchmarks to evaluate the capabilities of language models, despite the existence of certain benchmarks such as DRCD, TTQA, CMDQA, and FGC dataset. To address this gap, we propose a novel set of benchmarks that leverage existing English datasets and are tailored to evaluate language models in Traditional Chinese. These benchmarks encompass a wide range of tasks, including contextual question-answering, summarization, classification, and table understanding. The proposed benchmarks offer a comprehensive evaluation framework, enabling the assessment of language models' capabilities across different tasks. In this paper, we evaluate the performance of GPT-3.5, Taiwan-LLaMa-v1.0, and Model 7-C, our proprietary model, on these benchmarks. The evaluation results highlight that our model, Model 7-C, achieves performance comparable to GPT-3.5 with respect to a part of the evaluated capabilities. In an effort to advance the evaluation of language models in Traditional Chinese and stimulate further research in this field, we have open-sourced our benchmark and opened the model for trial.
Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation
Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co./spaces/per/BenchBench
Long Range Arena: A Benchmark for Efficient Transformers
Transformers do not scale very well to long sequence lengths largely because of quadratic self-attention complexity. In the recent months, a wide spectrum of efficient, fast Transformers have been proposed to tackle this problem, more often than not claiming superior or comparable model quality to vanilla Transformer models. To this date, there is no well-established consensus on how to evaluate this class of models. Moreover, inconsistent benchmarking on a wide spectrum of tasks and datasets makes it difficult to assess relative model quality amongst many models. This paper proposes a systematic and unified benchmark, LRA, specifically focused on evaluating model quality under long-context scenarios. Our benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning. We systematically evaluate ten well-established long-range Transformer models (Reformers, Linformers, Linear Transformers, Sinkhorn Transformers, Performers, Synthesizers, Sparse Transformers, and Longformers) on our newly proposed benchmark suite. LRA paves the way towards better understanding this class of efficient Transformer models, facilitates more research in this direction, and presents new challenging tasks to tackle. Our benchmark code will be released at https://github.com/google-research/long-range-arena.
EQ-Bench: An Emotional Intelligence Benchmark for Large Language Models
We introduce EQ-Bench, a novel benchmark designed to evaluate aspects of emotional intelligence in Large Language Models (LLMs). We assess the ability of LLMs to understand complex emotions and social interactions by asking them to predict the intensity of emotional states of characters in a dialogue. The benchmark is able to discriminate effectively between a wide range of models. We find that EQ-Bench correlates strongly with comprehensive multi-domain benchmarks like MMLU (Hendrycks et al., 2020) (r=0.97), indicating that we may be capturing similar aspects of broad intelligence. Our benchmark produces highly repeatable results using a set of 60 English-language questions. We also provide open-source code for an automated benchmarking pipeline at https://github.com/EQ-bench/EQ-Bench and a leaderboard at https://eqbench.com
JavaBench: A Benchmark of Object-Oriented Code Generation for Evaluating Large Language Models
Code generation benchmarks such as HumanEval are widely adopted to evaluate LLMs' capabilities. However, after consolidating the latest 24 benchmarks, we noticed three significant imbalances. First, imbalanced programming language. 95.8% of benchmarks involve Python, while only 5 benchmarks involve Java. Second, imbalanced code granularity. Function-/statement-level benchmarks account for over 83.3% of benchmarks. Only a mere handful extends to class-/project-levels, and all are limited to Python. Third, lacking advanced features. Existing benchmarks primarily assess basic coding skills, while overlooking advanced Object-Oriented Programming (OOP) features (i.e., encapsulation, inheritance, and polymorphism). To fill these gaps, we propose JavaBench, a project-level Java benchmark that exercises OOP features. It comprises four Java projects with 389 methods in 106 Java classes. The test coverage is up to 92%, and JavaBench is attested by 282 undergraduate students, reaching a 90.93/100 average score (i.e., pass rate against the test suite), ensuring the quality of documentation, code skeleton, and tests. To better evaluate LLM's capability against JavaBench, we introduce a systematic evaluation design covering three context settings and five synthesis strategies at two granularities using three hierarchical metrics. Our extensive experiment yields several interesting findings. First, we noticed that regarding project-level Java programming, LLMs are far behind undergraduate students (no project can be correctly completed by any studied LLMs, and at most 41.17% Pass@5 in a more relaxed evaluation). Second, using method signature as prompt context may strike an ideal balance for project-level code generation. JavaBench is publicly available at https://github.com/java-bench/JavaBench.
This is the way: designing and compiling LEPISZCZE, a comprehensive NLP benchmark for Polish
The availability of compute and data to train larger and larger language models increases the demand for robust methods of benchmarking the true progress of LM training. Recent years witnessed significant progress in standardized benchmarking for English. Benchmarks such as GLUE, SuperGLUE, or KILT have become de facto standard tools to compare large language models. Following the trend to replicate GLUE for other languages, the KLEJ benchmark has been released for Polish. In this paper, we evaluate the progress in benchmarking for low-resourced languages. We note that only a handful of languages have such comprehensive benchmarks. We also note the gap in the number of tasks being evaluated by benchmarks for resource-rich English/Chinese and the rest of the world. In this paper, we introduce LEPISZCZE (the Polish word for glew, the Middle English predecessor of glue), a new, comprehensive benchmark for Polish NLP with a large variety of tasks and high-quality operationalization of the benchmark. We design LEPISZCZE with flexibility in mind. Including new models, datasets, and tasks is as simple as possible while still offering data versioning and model tracking. In the first run of the benchmark, we test 13 experiments (task and dataset pairs) based on the five most recent LMs for Polish. We use five datasets from the Polish benchmark and add eight novel datasets. As the paper's main contribution, apart from LEPISZCZE, we provide insights and experiences learned while creating the benchmark for Polish as the blueprint to design similar benchmarks for other low-resourced languages.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
LEXTREME: A Multi-Lingual and Multi-Task Benchmark for the Legal Domain
Lately, propelled by the phenomenal advances around the transformer architecture, the legal NLP field has enjoyed spectacular growth. To measure progress, well curated and challenging benchmarks are crucial. However, most benchmarks are English only and in legal NLP specifically there is no multilingual benchmark available yet. Additionally, many benchmarks are saturated, with the best models clearly outperforming the best humans and achieving near perfect scores. We survey the legal NLP literature and select 11 datasets covering 24 languages, creating LEXTREME. To provide a fair comparison, we propose two aggregate scores, one based on the datasets and one on the languages. The best baseline (XLM-R large) achieves both a dataset aggregate score a language aggregate score of 61.3. This indicates that LEXTREME is still very challenging and leaves ample room for improvement. To make it easy for researchers and practitioners to use, we release LEXTREME on huggingface together with all the code required to evaluate models and a public Weights and Biases project with all the runs.
OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems
Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench
metabench -- A Sparse Benchmark to Measure General Ability in Large Language Models
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d=28,632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.5% root mean square error (RMSE), (2) reconstruct the original total score with 0.8% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.93.
Humanity's Last Exam
Benchmarks are important tools for tracking the rapid advancements in large language model (LLM) capabilities. However, benchmarks are not keeping pace in difficulty: LLMs now achieve over 90\% accuracy on popular benchmarks like MMLU, limiting informed measurement of state-of-the-art LLM capabilities. In response, we introduce Humanity's Last Exam (HLE), a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. HLE consists of 3,000 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of multiple-choice and short-answer questions suitable for automated grading. Each question has a known solution that is unambiguous and easily verifiable, but cannot be quickly answered via internet retrieval. State-of-the-art LLMs demonstrate low accuracy and calibration on HLE, highlighting a significant gap between current LLM capabilities and the expert human frontier on closed-ended academic questions. To inform research and policymaking upon a clear understanding of model capabilities, we publicly release HLE at https://lastexam.ai.
Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments
Large Language Models (LLMs) have shown remarkable performance across various tasks, yet significant disparities remain for non-English languages, and especially native African languages. This paper addresses these disparities by creating approximately 1 million human-translated words of new benchmark data in 8 low-resource African languages, covering a population of over 160 million speakers of: Amharic, Bambara, Igbo, Sepedi (Northern Sotho), Shona, Sesotho (Southern Sotho), Setswana, and Tsonga. Our benchmarks are translations of Winogrande and three sections of MMLU: college medicine, clinical knowledge, and virology. Using the translated benchmarks, we report previously unknown performance gaps between state-of-the-art (SOTA) LLMs in English and African languages. Finally, using results from over 400 fine-tuned models, we explore several methods to reduce the LLM performance gap, including high-quality dataset fine-tuning (using an LLM-as-an-Annotator), cross-lingual transfer, and cultural appropriateness adjustments. Key findings include average mono-lingual improvements of 5.6% with fine-tuning (with 5.4% average mono-lingual improvements when using high-quality data over low-quality data), 2.9% average gains from cross-lingual transfer, and a 3.0% out-of-the-box performance boost on culturally appropriate questions. The publicly available benchmarks, translations, and code from this study support further research and development aimed at creating more inclusive and effective language technologies.
Measuring The Impact Of Programming Language Distribution
Current benchmarks for evaluating neural code models focus on only a small subset of programming languages, excluding many popular languages such as Go or Rust. To ameliorate this issue, we present the BabelCode framework for execution-based evaluation of any benchmark in any language. BabelCode enables new investigations into the qualitative performance of models' memory, runtime, and individual test case results. Additionally, we present a new code translation dataset called Translating Python Programming Puzzles (TP3) from the Python Programming Puzzles (Schuster et al. 2021) benchmark that involves translating expert-level python functions to any language. With both BabelCode and the TP3 benchmark, we investigate if balancing the distributions of 14 languages in a training dataset improves a large language model's performance on low-resource languages. Training a model on a balanced corpus results in, on average, 12.34% higher pass@k across all tasks and languages compared to the baseline. We find that this strategy achieves 66.48% better pass@k on low-resource languages at the cost of only a 12.94% decrease to high-resource languages. In our three translation tasks, this strategy yields, on average, 30.77% better low-resource pass@k while having 19.58% worse high-resource pass@k.
What are the best systems? New perspectives on NLP Benchmarking
In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.
ParaShoot: A Hebrew Question Answering Dataset
NLP research in Hebrew has largely focused on morphology and syntax, where rich annotated datasets in the spirit of Universal Dependencies are available. Semantic datasets, however, are in short supply, hindering crucial advances in the development of NLP technology in Hebrew. In this work, we present ParaShoot, the first question answering dataset in modern Hebrew. The dataset follows the format and crowdsourcing methodology of SQuAD, and contains approximately 3000 annotated examples, similar to other question-answering datasets in low-resource languages. We provide the first baseline results using recently-released BERT-style models for Hebrew, showing that there is significant room for improvement on this task.
KOBEST: Korean Balanced Evaluation of Significant Tasks
A well-formulated benchmark plays a critical role in spurring advancements in the natural language processing (NLP) field, as it allows objective and precise evaluation of diverse models. As modern language models (LMs) have become more elaborate and sophisticated, more difficult benchmarks that require linguistic knowledge and reasoning have been proposed. However, most of these benchmarks only support English, and great effort is necessary to construct benchmarks for other low resource languages. To this end, we propose a new benchmark named Korean balanced evaluation of significant tasks (KoBEST), which consists of five Korean-language downstream tasks. Professional Korean linguists designed the tasks that require advanced Korean linguistic knowledge. Moreover, our data is purely annotated by humans and thoroughly reviewed to guarantee high data quality. We also provide baseline models and human performance results. Our dataset is available on the Huggingface.
Construction of a Japanese Financial Benchmark for Large Language Models
With the recent development of large language models (LLMs), models that focus on certain domains and languages have been discussed for their necessity. There is also a growing need for benchmarks to evaluate the performance of current LLMs in each domain. Therefore, in this study, we constructed a benchmark comprising multiple tasks specific to the Japanese and financial domains and performed benchmark measurements on some models. Consequently, we confirmed that GPT-4 is currently outstanding, and that the constructed benchmarks function effectively. According to our analysis, our benchmark can differentiate benchmark scores among models in all performance ranges by combining tasks with different difficulties.
McEval: Massively Multilingual Code Evaluation
Code large language models (LLMs) have shown remarkable advances in code understanding, completion, and generation tasks. Programming benchmarks, comprised of a selection of code challenges and corresponding test cases, serve as a standard to evaluate the capability of different LLMs in such tasks. However, most existing benchmarks primarily focus on Python and are still restricted to a limited number of languages, where other languages are translated from the Python samples (e.g. MultiPL-E) degrading the data diversity. To further facilitate the research of code LLMs, we propose a massively multilingual code benchmark covering 40 programming languages (McEval) with 16K test samples, which substantially pushes the limits of code LLMs in multilingual scenarios. The benchmark contains challenging code completion, understanding, and generation evaluation tasks with finely curated massively multilingual instruction corpora McEval-Instruct. In addition, we introduce an effective multilingual coder mCoder trained on McEval-Instruct to support multilingual programming language generation. Extensive experimental results on McEval show that there is still a difficult journey between open-source models and closed-source LLMs (e.g. GPT-series models) in numerous languages. The instruction corpora, evaluation benchmark, and leaderboard are available at https://mceval.github.io/.
Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning
Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit.
AixBench: A Code Generation Benchmark Dataset
We present a benchmark dataset for evaluating method-level code generation task. The benchmark contains a dataset of 175 samples for automated evaluation and a dataset of 161 samples for manual evaluation. We also present a new metric for automatically evaluating the correctness of the generated code, and a set of criteria to manually evaluating the overall quality of the generated code.
KLEJ: Comprehensive Benchmark for Polish Language Understanding
In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models.
GEMv2: Multilingual NLG Benchmarking in a Single Line of Code
Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish
Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU.
Introducing BEREL: BERT Embeddings for Rabbinic-Encoded Language
We present a new pre-trained language model (PLM) for Rabbinic Hebrew, termed Berel (BERT Embeddings for Rabbinic-Encoded Language). Whilst other PLMs exist for processing Hebrew texts (e.g., HeBERT, AlephBert), they are all trained on modern Hebrew texts, which diverges substantially from Rabbinic Hebrew in terms of its lexicographical, morphological, syntactic and orthographic norms. We demonstrate the superiority of Berel on Rabbinic texts via a challenge set of Hebrew homographs. We release the new model and homograph challenge set for unrestricted use.
WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs
Recent advancements in large language models (LLMs) showcase varied multilingual capabilities across tasks like translation, code generation, and reasoning. Previous assessments often limited their scope to fundamental natural language processing (NLP) or isolated capability-specific tasks. To alleviate this drawback, we aim to present a comprehensive multilingual multitask benchmark. First, we present a pipeline for selecting available and reasonable benchmarks from massive ones, addressing the oversight in previous work regarding the utility of these benchmarks, i.e., their ability to differentiate between models being evaluated. Leveraging this pipeline, we introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets. Furthermore, P-MMEval delivers consistent language coverage across various datasets and provides parallel samples. Finally, we conduct extensive experiments on representative multilingual model series to compare performances across models, analyze dataset effectiveness, examine prompt impacts on model performances, and explore the relationship between multilingual performances and factors such as tasks, model sizes, and languages. These insights offer valuable guidance for future research. The dataset is available at https://huggingface.co./datasets/Qwen/P-MMEval.
CRUXEval-X: A Benchmark for Multilingual Code Reasoning, Understanding and Execution
Code benchmarks such as HumanEval are widely adopted to evaluate Large Language Models' (LLMs) coding capabilities. However, there is an unignorable programming language bias in existing code benchmarks -- over 95% code generation benchmarks are dominated by Python, leaving the LLMs' capabilities in other programming languages such as Java and C/C++ unknown. Moreover, coding task bias is also crucial. Most benchmarks focus on code generation capability, while benchmarks for code reasoning (given input, reasoning output; and given output, reasoning input), an essential coding capability, are insufficient. Yet, constructing multi-lingual benchmarks can be expensive and labor-intensive, and codes in contest websites such as Leetcode suffer from data contamination during training. To fill this gap, we propose CRUXEVAL-X, a multi-lingual code reasoning benchmark that contains 19 programming languages. It comprises at least 600 subjects for each language, along with 19K content-consistent tests in total. In particular, the construction pipeline of CRUXEVAL-X works in a fully automated and test-guided manner, which iteratively generates and repairs based on execution feedback. Also, to cross language barriers (e.g., dynamic/static type systems in Python/C++), we formulated various transition rules between language pairs to facilitate translation. Our intensive evaluation of 24 representative LLMs reveals the correlation between language pairs. For example, TypeScript and JavaScript show a significant positive correlation, while Racket has less correlation with other languages. More interestingly, even a model trained solely on Python can achieve at most 34.4% Pass@1 in other languages, revealing the cross-language generalization of LLMs.
TextClass Benchmark: A Continuous Elo Rating of LLMs in Social Sciences
The TextClass Benchmark project is an ongoing, continuous benchmarking process that aims to provide a comprehensive, fair, and dynamic evaluation of LLMs and transformers for text classification tasks. This evaluation spans various domains and languages in social sciences disciplines engaged in NLP and text-as-data approach. The leaderboards present performance metrics and relative ranking using a tailored Elo rating system. With each leaderboard cycle, novel models are added, fixed test sets can be replaced for unseen, equivalent data to test generalisation power, ratings are updated, and a Meta-Elo leaderboard combines and weights domain-specific leaderboards. This article presents the rationale and motivation behind the project, explains the Elo rating system in detail, and estimates Meta-Elo across different classification tasks in social science disciplines. We also present a snapshot of the first cycle of classification tasks on incivility data in Chinese, English, German and Russian. This ongoing benchmarking process includes not only additional languages such as Arabic, Hindi, and Spanish but also a classification of policy agenda topics, misinformation, among others.
CulturalBench: a Robust, Diverse and Challenging Benchmark on Measuring the (Lack of) Cultural Knowledge of LLMs
To make large language models (LLMs) more helpful across diverse cultures, it is essential to have effective cultural knowledge benchmarks to measure and track our progress. Effective benchmarks need to be robust, diverse, and challenging. We introduce CulturalBench: a set of 1,227 human-written and human-verified questions for effectively assessing LLMs' cultural knowledge, covering 45 global regions including the underrepresented ones like Bangladesh, Zimbabwe, and Peru. Questions - each verified by five independent annotators - span 17 diverse topics ranging from food preferences to greeting etiquettes. We evaluate models on two setups: CulturalBench-Easy and CulturalBench-Hard which share the same questions but asked differently. We find that LLMs are sensitive to such difference in setups (e.g., GPT-4o with 27.3% difference). Compared to human performance (92.6% accuracy), CulturalBench-Hard is more challenging for frontier LLMs with the best performing model (GPT-4o) at only 61.5% and the worst (Llama3-8b) at 21.4%. Moreover, we find that LLMs often struggle with tricky questions that have multiple correct answers (e.g., What utensils do the Chinese usually use?), revealing a tendency to converge to a single answer. Our results also indicate that OpenAI GPT-4o substantially outperform other proprietary and open source models in questions related to all but one region (Oceania). Nonetheless, all models consistently underperform on questions related to South America and the Middle East.
CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.
Varco Arena: A Tournament Approach to Reference-Free Benchmarking Large Language Models
The rapid advancement of Large Language Models (LLMs) necessitates robust evaluation methodologies. Current benchmarking approaches often rely on comparing model outputs against predefined prompts and reference outputs. Relying on predefined reference outputs hinders flexible adaptation of benchmarks to the rapidly evolving capabilities of LLMs. This limitation necessitates periodic efforts to prepare new benchmarks. To keep pace with rapidly evolving LLM capabilities, we propose a more flexible benchmarking approach. Our method, \textbf{Varco Arena}, provides reference-free benchmarking of LLMs in tournament style. \textbf{Varco Arena} directly compares LLM outputs across a diverse set of prompts, determining model rankings through a single-elimination tournament structure. This direct pairwise comparison offers two key advantages: (1) Direct comparison, unmediated by reference text, more effectively orders competing LLMs, resulting in more reliable rankings, and (2) reference-free approach to benchmarking adds flexibility in updating benchmark prompts by eliminating the need for quality references. Our empirical results, supported by simulation experiments, demonstrate that the \textbf{Varco Arena} tournament approach aligns better with the current Elo model for benchmarking LLMs. The alignment is measured in terms of Spearman correlation, showing improvement over current practice of benchmarking that use reference outputs as comparison anchors.
Drawing Pandas: A Benchmark for LLMs in Generating Plotting Code
This paper introduces the human-curated PandasPlotBench dataset, designed to evaluate language models' effectiveness as assistants in visual data exploration. Our benchmark focuses on generating code for visualizing tabular data - such as a Pandas DataFrame - based on natural language instructions, complementing current evaluation tools and expanding their scope. The dataset includes 175 unique tasks. Our experiments assess several leading Large Language Models (LLMs) across three visualization libraries: Matplotlib, Seaborn, and Plotly. We show that the shortening of tasks has a minimal effect on plotting capabilities, allowing for the user interface that accommodates concise user input without sacrificing functionality or accuracy. Another of our findings reveals that while LLMs perform well with popular libraries like Matplotlib and Seaborn, challenges persist with Plotly, highlighting areas for improvement. We hope that the modular design of our benchmark will broaden the current studies on generating visualizations. Our benchmark is available online: https://huggingface.co./datasets/JetBrains-Research/plot_bench. The code for running the benchmark is also available: https://github.com/JetBrains-Research/PandasPlotBench.
Training a Bilingual Language Model by Mapping Tokens onto a Shared Character Space
We train a bilingual Arabic-Hebrew language model using a transliterated version of Arabic texts in Hebrew, to ensure both languages are represented in the same script. Given the morphological, structural similarities, and the extensive number of cognates shared among Arabic and Hebrew, we assess the performance of a language model that employs a unified script for both languages, on machine translation which requires cross-lingual knowledge. The results are promising: our model outperforms a contrasting model which keeps the Arabic texts in the Arabic script, demonstrating the efficacy of the transliteration step. Despite being trained on a dataset approximately 60% smaller than that of other existing language models, our model appears to deliver comparable performance in machine translation across both translation directions.
MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains
Recent advances in large language models (LLMs) have increased the demand for comprehensive benchmarks to evaluate their capabilities as human-like agents. Existing benchmarks, while useful, often focus on specific application scenarios, emphasizing task completion but failing to dissect the underlying skills that drive these outcomes. This lack of granularity makes it difficult to deeply discern where failures stem from. Additionally, setting up these environments requires considerable effort, and issues of unreliability and reproducibility sometimes arise, especially in interactive tasks. To address these limitations, we introduce the Massive Multitask Agent Understanding (MMAU) benchmark, featuring comprehensive offline tasks that eliminate the need for complex environment setups. It evaluates models across five domains, including teal{Tool-use}, teal{Directed Acyclic Graph (DAG) QA}, teal{Data Science and Machine Learning coding}, teal{Contest-level programming} and teal{Mathematics}, and covers five essential capabilities: orange{Understanding}, orange{Reasoning}, orange{Planning}, orange{Problem-solving}, and orange{Self-correction}. With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents. By testing 18 representative models on MMAU, we provide deep and insightful analyses. Ultimately, MMAU not only sheds light on the capabilities and limitations of LLM agents but also enhances the interpretability of their performance. Datasets and evaluation scripts of MMAU are released at https://github.com/apple/axlearn/docs/research/mmau.
Benchmarking AI Models in Software Engineering: A Review, Search Tool, and Enhancement Protocol
Benchmarks are essential for consistent evaluation and reproducibility. The integration of Artificial Intelligence into Software Engineering (AI4SE) has given rise to numerous benchmarks for tasks such as code generation and bug fixing. However, this surge presents challenges: (1) scattered benchmark knowledge across tasks, (2) difficulty in selecting relevant benchmarks, (3) the absence of a uniform standard for benchmark development, and (4) limitations of existing benchmarks. In this paper, we review 173 studies and identify 204 AI4SE benchmarks. We classify these benchmarks, analyze their limitations, and expose gaps in practices. Based on our review, we created BenchScout, a semantic search tool to find relevant benchmarks, using automated clustering of the contexts from associated studies. We conducted a user study with 22 participants to evaluate BenchScout's usability, effectiveness, and intuitiveness which resulted in average scores of 4.5, 4.0, and 4.1 out of 5. To advance benchmarking standards, we propose BenchFrame, a unified method to enhance benchmark quality. As a case study, we applied BenchFrame to the HumanEval benchmark and addressed its main limitations. This led to HumanEvalNext, featuring (1) corrected errors, (2) improved language conversion, (3) expanded test coverage, and (4) increased difficulty. We then evaluated ten state-of-the-art code language models on HumanEval, HumanEvalPlus, and HumanEvalNext. On HumanEvalNext, models showed a pass@1 score reduction of 31.22% and 19.94% compared to HumanEval and HumanEvalPlus, respectively.
Task Me Anything
Benchmarks for large multimodal language models (MLMs) now serve to simultaneously assess the general capabilities of models instead of evaluating for a specific capability. As a result, when a developer wants to identify which models to use for their application, they are overwhelmed by the number of benchmarks and remain uncertain about which benchmark's results are most reflective of their specific use case. This paper introduces Task-Me-Anything, a benchmark generation engine which produces a benchmark tailored to a user's needs. Task-Me-Anything maintains an extendable taxonomy of visual assets and can programmatically generate a vast number of task instances. Additionally, it algorithmically addresses user queries regarding MLM performance efficiently within a computational budget. It contains 113K images, 10K videos, 2K 3D object assets, over 365 object categories, 655 attributes, and 335 relationships. It can generate 750M image/video question-answering pairs, which focus on evaluating MLM perceptual capabilities. Task-Me-Anything reveals critical insights: open-source MLMs excel in object and attribute recognition but lack spatial and temporal understanding; each model exhibits unique strengths and weaknesses; larger models generally perform better, though exceptions exist; and GPT4o demonstrates challenges in recognizing rotating/moving objects and distinguishing colors.
GPT is Not an Annotator: The Necessity of Human Annotation in Fairness Benchmark Construction
Social biases in LLMs are usually measured via bias benchmark datasets. Current benchmarks have limitations in scope, grounding, quality, and human effort required. Previous work has shown success with a community-sourced, rather than crowd-sourced, approach to benchmark development. However, this work still required considerable effort from annotators with relevant lived experience. This paper explores whether an LLM (specifically, GPT-3.5-Turbo) can assist with the task of developing a bias benchmark dataset from responses to an open-ended community survey. We also extend the previous work to a new community and set of biases: the Jewish community and antisemitism. Our analysis shows that GPT-3.5-Turbo has poor performance on this annotation task and produces unacceptable quality issues in its output. Thus, we conclude that GPT-3.5-Turbo is not an appropriate substitute for human annotation in sensitive tasks related to social biases, and that its use actually negates many of the benefits of community-sourcing bias benchmarks.
Spanish and LLM Benchmarks: is MMLU Lost in Translation?
The evaluation of Large Language Models (LLMs) is a key element in their continuous improvement process and many benchmarks have been developed to assess the performance of LLMs in different tasks and topics. As LLMs become adopted worldwide, evaluating them in languages other than English is increasingly important. However, most LLM benchmarks are simply translated using an automated tool and then run in the target language. This means that the results depend not only on the LLM performance in that language but also on the quality of the translation. In this paper, we consider the case of the well-known Massive Multitask Language Understanding (MMLU) benchmark. Selected categories of the benchmark are translated into Spanish using Azure Translator and ChatGPT4 and run on ChatGPT4. Next, the results are processed to identify the test items that produce different answers in Spanish and English. Those are then analyzed manually to understand if the automatic translation caused the change. The results show that a significant fraction of the failing items can be attributed to mistakes in the translation of the benchmark. These results make a strong case for improving benchmarks in languages other than English by at least revising the translations of the items and preferably by adapting the tests to the target language by experts.
HackerRank-ASTRA: Evaluating Correctness & Consistency of Large Language Models on cross-domain multi-file project problems
Evaluating the real-world applicability of large language models (LLMs) provides valuable insights for their development and use in software development tasks. Existing benchmarks often focus on standalone coding problems or specific libraries, overlooking multi-file, project-based scenarios and lacking a rigorous evaluation of consistency. The HackerRank-ASTRA Benchmark introduces project-based coding problems that mirror real-world scenarios. It evaluates model consistency through 32 runs (k = 32) and median standard deviation while incorporating taxonomy-level analysis to assess sub-skill capabilities. Initial evaluations on 65 problems show that the top three models -- o1, o1-preview, and Claude-3.5-Sonnet-1022 -- achieved comparable average scores of 75%, with no statistically significant differences in performance. Notably, Claude-3.5-Sonnet-1022 demonstrated the highest consistency across problems, with low variability (SD = 0.0497), which was statistically significant compared to other models, highlighting its reliability for real-world software development tasks.
AmQA: Amharic Question Answering Dataset
Question Answering (QA) returns concise answers or answer lists from natural language text given a context document. Many resources go into curating QA datasets to advance robust models' development. There is a surge of QA datasets for languages like English, however, this is not true for Amharic. Amharic, the official language of Ethiopia, is the second most spoken Semitic language in the world. There is no published or publicly available Amharic QA dataset. Hence, to foster the research in Amharic QA, we present the first Amharic QA (AmQA) dataset. We crowdsourced 2628 question-answer pairs over 378 Wikipedia articles. Additionally, we run an XLMR Large-based baseline model to spark open-domain QA research interest. The best-performing baseline achieves an F-score of 69.58 and 71.74 in reader-retriever QA and reading comprehension settings respectively.
Mukayese: Turkish NLP Strikes Back
Having sufficient resources for language X lifts it from the under-resourced languages class, but not necessarily from the under-researched class. In this paper, we address the problem of the absence of organized benchmarks in the Turkish language. We demonstrate that languages such as Turkish are left behind the state-of-the-art in NLP applications. As a solution, we present Mukayese, a set of NLP benchmarks for the Turkish language that contains several NLP tasks. We work on one or more datasets for each benchmark and present two or more baselines. Moreover, we present four new benchmarking datasets in Turkish for language modeling, sentence segmentation, and spell checking. All datasets and baselines are available under: https://github.com/alisafaya/mukayese
FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods
This paper introduces the Fair Fairness Benchmark (FFB), a benchmarking framework for in-processing group fairness methods. Ensuring fairness in machine learning is critical for ethical and legal compliance. However, there exist challenges in comparing and developing of fairness methods due to inconsistencies in experimental settings, lack of accessible algorithmic implementations, and limited extensibility of current fairness packages and tools. To address these issues, we introduce an open-source, standardized benchmark for evaluating in-processing group fairness methods and provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness. This work offers the following key contributions: the provision of flexible, extensible, minimalistic, and research-oriented open-source code; the establishment of unified fairness method benchmarking pipelines; and extensive benchmarking, which yields key insights from 45,079 experiments. We believe our work will significantly facilitate the growth and development of the fairness research community. The benchmark, including code and running logs, is available at https://github.com/ahxt/fair_fairness_benchmark
Technical Report on the CleverHans v2.1.0 Adversarial Examples Library
CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system.
When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards
Large Language Model (LLM) leaderboards based on benchmark rankings are regularly used to guide practitioners in model selection. Often, the published leaderboard rankings are taken at face value - we show this is a (potentially costly) mistake. Under existing leaderboards, the relative performance of LLMs is highly sensitive to (often minute) details. We show that for popular multiple choice question benchmarks (e.g. MMLU) minor perturbations to the benchmark, such as changing the order of choices or the method of answer selection, result in changes in rankings up to 8 positions. We explain this phenomenon by conducting systematic experiments over three broad categories of benchmark perturbations and identifying the sources of this behavior. Our analysis results in several best-practice recommendations, including the advantage of a hybrid scoring method for answer selection. Our study highlights the dangers of relying on simple benchmark evaluations and charts the path for more robust evaluation schemes on the existing benchmarks.
FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing
We present a benchmark suite of four datasets for evaluating the fairness of pre-trained language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Switzerland, and China), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP.
ETHIC: Evaluating Large Language Models on Long-Context Tasks with High Information Coverage
Recent advancements in large language models (LLM) capable of processing extremely long texts highlight the need for a dedicated evaluation benchmark to assess their long-context capabilities. However, existing methods, like the needle-in-a-haystack test, do not effectively assess whether these models fully utilize contextual information, raising concerns about the reliability of current evaluation techniques. To thoroughly examine the effectiveness of existing benchmarks, we introduce a new metric called information coverage (IC), which quantifies the proportion of the input context necessary for answering queries. Our findings indicate that current benchmarks exhibit low IC; although the input context may be extensive, the actual usable context is often limited. To address this, we present ETHIC, a novel benchmark designed to assess LLMs' ability to leverage the entire context. Our benchmark comprises 2,648 test instances spanning four long-context tasks with high IC scores in the domains of books, debates, medicine, and law. Our evaluations reveal significant performance drops in contemporary LLMs, highlighting a critical challenge in managing long contexts. Our benchmark is available at https://github.com/dmis-lab/ETHIC.
Introducing DictaLM -- A Large Generative Language Model for Modern Hebrew
We present DictaLM, a large-scale language model tailored for Modern Hebrew. Boasting 7B parameters, this model is predominantly trained on Hebrew-centric data. As a commitment to promoting research and development in the Hebrew language, we release both the foundation model and the instruct-tuned model under a Creative Commons license. Concurrently, we introduce DictaLM-Rab, another foundation model geared towards Rabbinic/Historical Hebrew. These foundation models serve as ideal starting points for fine-tuning various Hebrew-specific tasks, such as instruction, Q&A, sentiment analysis, and more. This release represents a preliminary step, offering an initial Hebrew LLM model for the Hebrew NLP community to experiment with.
MR-BEN: A Comprehensive Meta-Reasoning Benchmark for Large Language Models
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, it has been increasingly challenging to evaluate the reasoning capability of LLMs. Concretely, existing outcome-based benchmarks begin to saturate and become less sufficient to monitor the progress. To this end, we present a process-based benchmark MR-BEN that demands a meta reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. MR-BEN is a comprehensive benchmark comprising 5,975 questions collected from human experts, covering various subjects such as physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models). For example, open-source models are seemingly comparable to GPT-4 on outcome-based benchmarks, but they lag far behind on our benchmark, revealing the underlying reasoning capability gap between them. Our dataset and codes are available on https://randolph-zeng.github.io/Mr-Ben.github.io/.
XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization
Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders XTREME benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.
BEIR-PL: Zero Shot Information Retrieval Benchmark for the Polish Language
The BEIR dataset is a large, heterogeneous benchmark for Information Retrieval (IR) in zero-shot settings, garnering considerable attention within the research community. However, BEIR and analogous datasets are predominantly restricted to the English language. Our objective is to establish extensive large-scale resources for IR in the Polish language, thereby advancing the research in this NLP area. In this work, inspired by mMARCO and Mr.~TyDi datasets, we translated all accessible open IR datasets into Polish, and we introduced the BEIR-PL benchmark -- a new benchmark which comprises 13 datasets, facilitating further development, training and evaluation of modern Polish language models for IR tasks. We executed an evaluation and comparison of numerous IR models on the newly introduced BEIR-PL benchmark. Furthermore, we publish pre-trained open IR models for Polish language,d marking a pioneering development in this field. Additionally, the evaluation revealed that BM25 achieved significantly lower scores for Polish than for English, which can be attributed to high inflection and intricate morphological structure of the Polish language. Finally, we trained various re-ranking models to enhance the BM25 retrieval, and we compared their performance to identify their unique characteristic features. To ensure accurate model comparisons, it is necessary to scrutinise individual results rather than to average across the entire benchmark. Thus, we thoroughly analysed the outcomes of IR models in relation to each individual data subset encompassed by the BEIR benchmark. The benchmark data is available at URL {\bf https://huggingface.co./clarin-knext}.
From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline
The rapid evolution of language models has necessitated the development of more challenging benchmarks. Current static benchmarks often struggle to consistently distinguish between the capabilities of different models and fail to align with real-world user preferences. On the other hand, live crowd-sourced platforms like the Chatbot Arena collect a wide range of natural prompts and user feedback. However, these prompts vary in sophistication and the feedback cannot be applied offline to new models. In order to ensure that benchmarks keep up with the pace of LLM development, we address how one can evaluate benchmarks on their ability to confidently separate models and their alignment with human preference. Under these principles, we developed BenchBuilder, a living benchmark that filters high-quality prompts from live data sources to enable offline evaluation on fresh, challenging prompts. BenchBuilder identifies seven indicators of a high-quality prompt, such as the requirement for domain knowledge, and utilizes an LLM annotator to select a high-quality subset of prompts from various topic clusters. The LLM evaluation process employs an LLM judge to ensure a fully automated, high-quality, and constantly updating benchmark. We apply BenchBuilder on prompts from the Chatbot Arena to create Arena-Hard-Auto v0.1: 500 challenging user prompts from a wide range of tasks. Arena-Hard-Auto v0.1 offers 3x tighter confidence intervals than MT-Bench and achieves a state-of-the-art 89.1% agreement with human preference rankings, all at a cost of only $25 and without human labelers. The BenchBuilder pipeline enhances evaluation benchmarks and provides a valuable tool for developers, enabling them to extract high-quality benchmarks from extensive data with minimal effort.
ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models
Despite the widespread adoption of Large language models (LLMs), their remarkable capabilities remain limited to a few high-resource languages. Additionally, many low-resource languages (e.g. African languages) are often evaluated only on basic text classification tasks due to the lack of appropriate or comprehensive benchmarks outside of high-resource languages. In this paper, we introduce IrokoBench -- a human-translated benchmark dataset for 16 typologically-diverse low-resource African languages covering three tasks: natural language inference~(AfriXNLI), mathematical reasoning~(AfriMGSM), and multi-choice knowledge-based QA~(AfriMMLU). We use IrokoBench to evaluate zero-shot, few-shot, and translate-test settings~(where test sets are translated into English) across 10 open and four proprietary LLMs. Our evaluation reveals a significant performance gap between high-resource languages~(such as English and French) and low-resource African languages. We observe a significant performance gap between open and proprietary models, with the highest performing open model, Aya-101 only at 58\% of the best-performing proprietary model GPT-4o performance. Machine translating the test set to English before evaluation helped to close the gap for larger models that are English-centric, like LLaMa 3 70B. These findings suggest that more efforts are needed to develop and adapt LLMs for African languages.
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
One Billion Word Benchmark for Measuring Progress in Statistical Language Modeling
We propose a new benchmark corpus to be used for measuring progress in statistical language modeling. With almost one billion words of training data, we hope this benchmark will be useful to quickly evaluate novel language modeling techniques, and to compare their contribution when combined with other advanced techniques. We show performance of several well-known types of language models, with the best results achieved with a recurrent neural network based language model. The baseline unpruned Kneser-Ney 5-gram model achieves perplexity 67.6; a combination of techniques leads to 35% reduction in perplexity, or 10% reduction in cross-entropy (bits), over that baseline. The benchmark is available as a code.google.com project; besides the scripts needed to rebuild the training/held-out data, it also makes available log-probability values for each word in each of ten held-out data sets, for each of the baseline n-gram models.
Analyzing Multilingual Competency of LLMs in Multi-Turn Instruction Following: A Case Study of Arabic
While significant progress has been made in benchmarking Large Language Models (LLMs) across various tasks, there is a lack of comprehensive evaluation of their abilities in responding to multi-turn instructions in less-commonly tested languages like Arabic. Our paper offers a detailed examination of the proficiency of open LLMs in such scenarios in Arabic. Utilizing a customized Arabic translation of the MT-Bench benchmark suite, we employ GPT-4 as a uniform evaluator for both English and Arabic queries to assess and compare the performance of the LLMs on various open-ended tasks. Our findings reveal variations in model responses on different task categories, e.g., logic vs. literacy, when instructed in English or Arabic. We find that fine-tuned base models using multilingual and multi-turn datasets could be competitive to models trained from scratch on multilingual data. Finally, we hypothesize that an ensemble of small, open LLMs could perform competitively to proprietary LLMs on the benchmark.
AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models
Evaluation is critical for assessing capabilities, tracking scientific progress, and informing model selection. In this paper, we present three desiderata for a good benchmark for language models: (i) salience (e.g., knowledge about World War II is more salient than a random day in history), (ii) novelty (i.e., the benchmark reveals new trends in model rankings not shown by previous benchmarks), and (iii) difficulty (i.e., the benchmark should be difficult for existing models, leaving headroom for future improvement). We operationalize these three desiderata and cast benchmark creation as a search problem, that of finding benchmarks that that satisfy all three desiderata. To tackle this search problem, we present AutoBencher, which uses a language model to automatically search for datasets that meet the three desiderata. AutoBencher uses privileged information (e.g. relevant documents) to construct reliable datasets, and adaptivity with reranking to optimize for the search objective. We use AutoBencher to create datasets for math, multilingual, and knowledge-intensive question answering. The scalability of AutoBencher allows it to test fine-grained categories and tail knowledge, creating datasets that are on average 27% more novel and 22% more difficult than existing benchmarks. A closer investigation of our constructed datasets shows that we can identify specific gaps in LM knowledge in language models that are not captured by existing benchmarks, such as Gemini Pro performing much worse on question answering about the Permian Extinction and Fordism, while OpenAGI-7B performing surprisingly well on QA about COVID-19.
Linguistic Generalizability of Test-Time Scaling in Mathematical Reasoning
Scaling pre-training compute has proven effective for achieving mulitlinguality, but does the same hold for test-time scaling? In this work, we introduce MCLM, a multilingual math benchmark featuring competition-level problems in 55 languages. We test three test-time scaling methods-Outcome Reward Modeling (ORM), Process Reward Modeling (ORM), and Budget Forcing (BF)-on both Qwen2.5-1.5B Math and MR1-1.5B, a multilingual LLM we trained for extended reasoning. Our experiments show that using Qwen2.5-1.5B Math with ORM achieves a score of 35.8 on MCLM, while BF on MR1-1.5B attains 35.2. Although "thinking LLMs" have recently garnered significant attention, we find that their performance is comparable to traditional scaling methods like best-of-N once constrained to similar levels of inference FLOPs. Moreover, while BF yields a 20-point improvement on English AIME, it provides only a 1.94-point average gain across other languages-a pattern consistent across the other test-time scaling methods we studied-higlighting that test-time scaling may not generalize as effectively to multilingual tasks. To foster further research, we release MCLM, MR1-1.5B, and evaluation results.
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
Suvach -- Generated Hindi QA benchmark
Current evaluation benchmarks for question answering (QA) in Indic languages often rely on machine translation of existing English datasets. This approach suffers from bias and inaccuracies inherent in machine translation, leading to datasets that may not reflect the true capabilities of EQA models for Indic languages. This paper proposes a new benchmark specifically designed for evaluating Hindi EQA models and discusses the methodology to do the same for any task. This method leverages large language models (LLMs) to generate a high-quality dataset in an extractive setting, ensuring its relevance for the target language. We believe this new resource will foster advancements in Hindi NLP research by providing a more accurate and reliable evaluation tool.
ORCA: A Challenging Benchmark for Arabic Language Understanding
Due to their crucial role in all NLP, several benchmarks have been proposed to evaluate pretrained language models. In spite of these efforts, no public benchmark of diverse nature currently exists for evaluation of Arabic. This makes it challenging to measure progress for both Arabic and multilingual language models. This challenge is compounded by the fact that any benchmark targeting Arabic needs to take into account the fact that Arabic is not a single language but rather a collection of languages and varieties. In this work, we introduce ORCA, a publicly available benchmark for Arabic language understanding evaluation. ORCA is carefully constructed to cover diverse Arabic varieties and a wide range of challenging Arabic understanding tasks exploiting 60 different datasets across seven NLU task clusters. To measure current progress in Arabic NLU, we use ORCA to offer a comprehensive comparison between 18 multilingual and Arabic language models. We also provide a public leaderboard with a unified single-number evaluation metric (ORCA score) to facilitate future research.
UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.
DevBench: A Comprehensive Benchmark for Software Development
Recent advancements in large language models (LLMs) have significantly enhanced their coding capabilities. However, existing benchmarks predominantly focused on simplified or isolated aspects of programming, such as single-file code generation or repository issue debugging, falling short of measuring the full spectrum of challenges raised by real-world programming activities. To this end, we propose DevBench, a comprehensive benchmark that evaluates LLMs across various stages of the software development lifecycle, including software design, environment setup, implementation, acceptance testing, and unit testing. DevBench features a wide range of programming languages and domains, high-quality data collection, and carefully designed and verified metrics for each task. Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench. Analyses reveal that models struggle with understanding the complex structures in the repository, managing the compilation process, and grasping advanced programming concepts. Our findings offer actionable insights for the future development of LLMs toward real-world programming applications. Our benchmark is available at https://github.com/open-compass/DevBench
"Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages.
CS-Bench: A Comprehensive Benchmark for Large Language Models towards Computer Science Mastery
Computer Science (CS) stands as a testament to the intricacies of human intelligence, profoundly advancing the development of artificial intelligence and modern society. However, the current community of large language models (LLMs) overly focuses on benchmarks for analyzing specific foundational skills (e.g. mathematics and code generation), neglecting an all-round evaluation of the computer science field. To bridge this gap, we introduce CS-Bench, the first bilingual (Chinese-English) benchmark dedicated to evaluating the performance of LLMs in computer science. CS-Bench comprises approximately 5K meticulously curated test samples, covering 26 subfields across 4 key areas of computer science, encompassing various task forms and divisions of knowledge and reasoning. Utilizing CS-Bench, we conduct a comprehensive evaluation of over 30 mainstream LLMs, revealing the relationship between CS performance and model scales. We also quantitatively analyze the reasons for failures in existing LLMs and highlight directions for improvements, including knowledge supplementation and CS-specific reasoning. Further cross-capability experiments show a high correlation between LLMs' capabilities in computer science and their abilities in mathematics and coding. Moreover, expert LLMs specialized in mathematics and coding also demonstrate strong performances in several CS subfields. Looking ahead, we envision CS-Bench serving as a cornerstone for LLM applications in the CS field and paving new avenues in assessing LLMs' diverse reasoning capabilities. The CS-Bench data and evaluation code are available at https://github.com/csbench/csbench.
ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics
We introduce ProofNet, a benchmark for autoformalization and formal proving of undergraduate-level mathematics. The ProofNet benchmarks consists of 371 examples, each consisting of a formal theorem statement in Lean 3, a natural language theorem statement, and a natural language proof. The problems are primarily drawn from popular undergraduate pure mathematics textbooks and cover topics such as real and complex analysis, linear algebra, abstract algebra, and topology. We intend for ProofNet to be a challenging benchmark that will drive progress in autoformalization and automatic theorem proving. We report baseline results on statement autoformalization via in-context learning. Moreover, we introduce two novel statement autoformalization methods: prompt retrieval and distilled backtranslation.
Theoretical Physics Benchmark (TPBench) -- a Dataset and Study of AI Reasoning Capabilities in Theoretical Physics
We introduce a benchmark to evaluate the capability of AI to solve problems in theoretical physics, focusing on high-energy theory and cosmology. The first iteration of our benchmark consists of 57 problems of varying difficulty, from undergraduate to research level. These problems are novel in the sense that they do not come from public problem collections. We evaluate our data set on various open and closed language models, including o3-mini, o1, DeepSeek-R1, GPT-4o and versions of Llama and Qwen. While we find impressive progress in model performance with the most recent models, our research-level difficulty problems are mostly unsolved. We address challenges of auto-verifiability and grading, and discuss common failure modes. While currently state-of-the art models are still of limited use for researchers, our results show that AI assisted theoretical physics research may become possible in the near future. We discuss the main obstacles towards this goal and possible strategies to overcome them. The public problems and solutions, results for various models, and updates to the data set and score distribution, are available on the website of the dataset tpbench.org.
MIRAGE-Bench: Automatic Multilingual Benchmark Arena for Retrieval-Augmented Generation Systems
Traditional Retrieval-Augmented Generation (RAG) benchmarks rely on different heuristic-based metrics for evaluation, but these require human preferences as ground truth for reference. In contrast, arena-based benchmarks, where two models compete each other, require an expensive Large Language Model (LLM) as a judge for a reliable evaluation. We present an easy and efficient technique to get the best of both worlds. The idea is to train a learning to rank model as a "surrogate" judge using RAG-based evaluation heuristics as input, to produce a synthetic arena-based leaderboard. Using this idea, We develop MIRAGE-Bench, a standardized arena-based multilingual RAG benchmark for 18 diverse languages on Wikipedia. The benchmark is constructed using MIRACL, a retrieval dataset, and extended for multilingual generation evaluation. MIRAGE-Bench evaluates RAG extensively coupling both heuristic features and LLM as a judge evaluator. In our work, we benchmark 19 diverse multilingual-focused LLMs, and achieve a high correlation (Kendall Tau (tau) = 0.909) using our surrogate judge learned using heuristic features with pairwise evaluations and between GPT-4o as a teacher on the MIRAGE-Bench leaderboard using the Bradley-Terry framework. We observe proprietary and large open-source LLMs currently dominate in multilingual RAG. MIRAGE-Bench is available at: https://github.com/vectara/mirage-bench.
Towards Cross-Lingual LLM Evaluation for European Languages
The rise of Large Language Models (LLMs) has revolutionized natural language processing across numerous languages and tasks. However, evaluating LLM performance in a consistent and meaningful way across multiple European languages remains challenging, especially due to the scarcity of multilingual benchmarks. We introduce a cross-lingual evaluation approach tailored for European languages. We employ translated versions of five widely-used benchmarks to assess the capabilities of 40 LLMs across 21 European languages. Our contributions include examining the effectiveness of translated benchmarks, assessing the impact of different translation services, and offering a multilingual evaluation framework for LLMs that includes newly created datasets: EU20-MMLU, EU20-HellaSwag, EU20-ARC, EU20-TruthfulQA, and EU20-GSM8K. The benchmarks and results are made publicly available to encourage further research in multilingual LLM evaluation.
mHumanEval -- A Multilingual Benchmark to Evaluate Large Language Models for Code Generation
Recent advancements in large language models (LLMs) have significantly enhanced code generation from natural language prompts. The HumanEval Benchmark, developed by OpenAI, remains the most widely used code generation benchmark. However, this and other Code LLM benchmarks face critical limitations, particularly in task diversity, test coverage, and linguistic scope. Current evaluations primarily focus on English-to-Python conversion tasks with limited test cases, potentially overestimating model performance. While recent works have addressed test coverage and programming language (PL) diversity, code generation from low-resource language prompts remains largely unexplored. To address this gap, we introduce mHumanEval, an extended benchmark supporting prompts in over 200 natural languages. We employ established machine translation methods to compile the benchmark, coupled with a quality assurance process. Furthermore, we provide expert human translations for 15 diverse natural languages (NLs). We conclude by analyzing the multilingual code generation capabilities of state-of-the-art (SOTA) Code LLMs, offering insights into the current landscape of cross-lingual code generation.
Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity
This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well.
A User-Centric Benchmark for Evaluating Large Language Models
Large Language Models (LLMs) are essential tools to collaborate with users on different tasks. Evaluating their performance to serve users' needs in real-world scenarios is important. While many benchmarks have been created, they mainly focus on specific predefined model abilities. Few have covered the intended utilization of LLMs by real users. To address this oversight, we propose benchmarking LLMs from a user perspective in both dataset construction and evaluation designs. We first collect 1846 real-world use cases with 15 LLMs from a user study with 712 participants from 23 countries. These self-reported cases form the User Reported Scenarios(URS) dataset with a categorization of 7 user intents. Secondly, on this authentic multi-cultural dataset, we benchmark 10 LLM services on their efficacy in satisfying user needs. Thirdly, we show that our benchmark scores align well with user-reported experience in LLM interactions across diverse intents, both of which emphasize the overlook of subjective scenarios. In conclusion, our study proposes to benchmark LLMs from a user-centric perspective, aiming to facilitate evaluations that better reflect real user needs. The benchmark dataset and code are available at https://github.com/Alice1998/URS.
UniSumEval: Towards Unified, Fine-Grained, Multi-Dimensional Summarization Evaluation for LLMs
Existing benchmarks for summarization quality evaluation often lack diverse input scenarios, focus on narrowly defined dimensions (e.g., faithfulness), and struggle with subjective and coarse-grained annotation schemes. To address these shortcomings, we create UniSumEval benchmark, which extends the range of input context (e.g., domain, length) and provides fine-grained, multi-dimensional annotations. We use AI assistance in data creation, identifying potentially hallucinogenic input texts, and also helping human annotators reduce the difficulty of fine-grained annotation tasks. With UniSumEval, we benchmark nine latest language models as summarizers, offering insights into their performance across varying input contexts and evaluation dimensions. Furthermore, we conduct a thorough comparison of SOTA automated summary evaluators. Our benchmark data will be available at https://github.com/DISL-Lab/UniSumEval-v1.0.
PyBench: Evaluating LLM Agent on various real-world coding tasks
The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce PyBench, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: PyLlama3 achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: https://github.com/Mercury7353/PyBench{https://github.com/Mercury7353/PyBench}
Evaluating and Aligning CodeLLMs on Human Preference
Code large language models (codeLLMs) have made significant strides in code generation. Most previous code-related benchmarks, which consist of various programming exercises along with the corresponding test cases, are used as a common measure to evaluate the performance and capabilities of code LLMs. However, the current code LLMs focus on synthesizing the correct code snippet, ignoring the alignment with human preferences, where the query should be sampled from the practical application scenarios and the model-generated responses should satisfy the human preference. To bridge the gap between the model-generated response and human preference, we present a rigorous human-curated benchmark CodeArena to emulate the complexity and diversity of real-world coding tasks, where 397 high-quality samples spanning 40 categories and 44 programming languages, carefully curated from user queries. Further, we propose a diverse synthetic instruction corpus SynCode-Instruct (nearly 20B tokens) by scaling instructions from the website to verify the effectiveness of the large-scale synthetic instruction fine-tuning, where Qwen2.5-SynCoder totally trained on synthetic instruction data can achieve top-tier performance of open-source code LLMs. The results find performance differences between execution-based benchmarks and CodeArena. Our systematic experiments of CodeArena on 40+ LLMs reveal a notable performance gap between open SOTA code LLMs (e.g. Qwen2.5-Coder) and proprietary LLMs (e.g., OpenAI o1), underscoring the importance of the human preference alignment.\url{https://codearenaeval.github.io/ }
LLM-Inference-Bench: Inference Benchmarking of Large Language Models on AI Accelerators
Large Language Models (LLMs) have propelled groundbreaking advancements across several domains and are commonly used for text generation applications. However, the computational demands of these complex models pose significant challenges, requiring efficient hardware acceleration. Benchmarking the performance of LLMs across diverse hardware platforms is crucial to understanding their scalability and throughput characteristics. We introduce LLM-Inference-Bench, a comprehensive benchmarking suite to evaluate the hardware inference performance of LLMs. We thoroughly analyze diverse hardware platforms, including GPUs from Nvidia and AMD and specialized AI accelerators, Intel Habana and SambaNova. Our evaluation includes several LLM inference frameworks and models from LLaMA, Mistral, and Qwen families with 7B and 70B parameters. Our benchmarking results reveal the strengths and limitations of various models, hardware platforms, and inference frameworks. We provide an interactive dashboard to help identify configurations for optimal performance for a given hardware platform.
Eureka: Evaluating and Understanding Large Foundation Models
Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.
The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation
One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond.
MEGAVERSE: Benchmarking Large Language Models Across Languages, Modalities, Models and Tasks
Recently, there has been a rapid advancement in research on Large Language Models (LLMs), resulting in significant progress in several Natural Language Processing (NLP) tasks. Consequently, there has been a surge in LLM evaluation research to comprehend the models' capabilities and limitations. However, much of this research has been confined to the English language, leaving LLM building and evaluation for non-English languages relatively unexplored. There has been an introduction of several new LLMs, necessitating their evaluation on non-English languages. This study aims to expand our MEGA benchmarking suite by including six new datasets to form the MEGAVERSE benchmark. The benchmark comprises 22 datasets covering 81 languages, including low-resource African languages. We evaluate several state-of-the-art LLMs like GPT-3.5-Turbo, GPT4, PaLM2, and Llama2 on the MEGAVERSE datasets. Additionally, we include two multimodal datasets in the benchmark and assess the performance of the LLaVa-v1.5 model. Our experiments suggest that GPT4 and PaLM2 outperform the Llama models on various tasks, notably on low-resource languages, with GPT4 outperforming PaLM2 on more datasets than vice versa. However, issues such as data contamination must be addressed to obtain an accurate assessment of LLM performance on non-English languages.
All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages
Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.
MMBench: Is Your Multi-modal Model an All-around Player?
Large vision-language models have recently achieved remarkable progress, exhibiting great perception and reasoning abilities concerning visual information. However, how to effectively evaluate these large vision-language models remains a major obstacle, hindering future model development. Traditional benchmarks like VQAv2 or COCO Caption provide quantitative performance measurements but suffer from a lack of fine-grained ability assessment and non-robust evaluation metrics. Recent subjective benchmarks, such as OwlEval, offer comprehensive evaluations of a model's abilities by incorporating human labor, but they are not scalable and display significant bias. In response to these challenges, we propose MMBench, a novel multi-modality benchmark. MMBench methodically develops a comprehensive evaluation pipeline, primarily comprised of two elements. The first element is a meticulously curated dataset that surpasses existing similar benchmarks in terms of the number and variety of evaluation questions and abilities. The second element introduces a novel CircularEval strategy and incorporates the use of ChatGPT. This implementation is designed to convert free-form predictions into pre-defined choices, thereby facilitating a more robust evaluation of the model's predictions. MMBench is a systematically-designed objective benchmark for robustly evaluating the various abilities of vision-language models. We hope MMBench will assist the research community in better evaluating their models and encourage future advancements in this domain. Project page: https://opencompass.org.cn/mmbench.
The Fault in our Stars: Quality Assessment of Code Generation Benchmarks
Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models may have data contamination issues.
JudgeBench: A Benchmark for Evaluating LLM-based Judges
LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .
Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap
We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/.
DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation
Code benchmarks such as HumanEval are widely adopted to evaluate the capabilities of Large Language Models (LLMs), providing insights into their strengths and weaknesses. However, current benchmarks primarily exercise LLMs' capability on common coding tasks (e.g., bubble sort, greatest common divisor), leaving domain-specific coding tasks (e.g., computation, system, cryptography) unexplored. To fill this gap, we propose a multi-domain code benchmark, DOMAINEVAL, designed to evaluate LLMs' coding capabilities thoroughly. Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study. Interesting findings are observed by evaluating 12 representative LLMs against DOMAINEVAL. We notice that LLMs are generally good at computation tasks while falling short on cryptography and system coding tasks. The performance gap can be as much as 68.94% (80.94% - 12.0%) in some LLMs. We also observe that generating more samples can increase the overall performance of LLMs, while the domain bias may even increase. The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL, providing directions for future research improvements. The leaderboard is available at https://domaineval.github.io/.
Benchmarking Benchmark Leakage in Large Language Models
Amid the expanding use of pre-training data, the phenomenon of benchmark dataset leakage has become increasingly prominent, exacerbated by opaque training processes and the often undisclosed inclusion of supervised data in contemporary Large Language Models (LLMs). This issue skews benchmark effectiveness and fosters potentially unfair comparisons, impeding the field's healthy development. To address this, we introduce a detection pipeline utilizing Perplexity and N-gram accuracy, two simple and scalable metrics that gauge a model's prediction precision on benchmark, to identify potential data leakages. By analyzing 31 LLMs under the context of mathematical reasoning, we reveal substantial instances of training even test set misuse, resulting in potentially unfair comparisons. These findings prompt us to offer several recommendations regarding model documentation, benchmark setup, and future evaluations. Notably, we propose the "Benchmark Transparency Card" to encourage clear documentation of benchmark utilization, promoting transparency and healthy developments of LLMs. we have made our leaderboard, pipeline implementation, and model predictions publicly available, fostering future research.
TruthfulQA: Measuring How Models Mimic Human Falsehoods
We propose a benchmark to measure whether a language model is truthful in generating answers to questions. The benchmark comprises 817 questions that span 38 categories, including health, law, finance and politics. We crafted questions that some humans would answer falsely due to a false belief or misconception. To perform well, models must avoid generating false answers learned from imitating human texts. We tested GPT-3, GPT-Neo/J, GPT-2 and a T5-based model. The best model was truthful on 58% of questions, while human performance was 94%. Models generated many false answers that mimic popular misconceptions and have the potential to deceive humans. The largest models were generally the least truthful. This contrasts with other NLP tasks, where performance improves with model size. However, this result is expected if false answers are learned from the training distribution. We suggest that scaling up models alone is less promising for improving truthfulness than fine-tuning using training objectives other than imitation of text from the web.
Don't Make Your LLM an Evaluation Benchmark Cheater
Large language models~(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity. To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs in different aspects. Despite that a number of high-quality benchmarks have been released, the concerns about the appropriate use of these benchmarks and the fair comparison of different models are increasingly growing. Considering these concerns, in this paper, we discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results. Specially, we focus on a special issue that would lead to inappropriate evaluation, \ie benchmark leakage, referring that the data related to evaluation sets is occasionally used for model training. This phenomenon now becomes more common since pre-training data is often prepared ahead of model test. We conduct extensive experiments to study the effect of benchmark leverage, and find that it can dramatically boost the evaluation results, which would finally lead to an unreliable assessment of model performance. To improve the use of existing evaluation benchmarks, we finally present several guidelines for both LLM developers and benchmark maintainers. We hope this work can draw attention to appropriate training and evaluation of LLMs.
Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets
Inspired by the success of the General Language Understanding Evaluation benchmark, we introduce the Biomedical Language Understanding Evaluation (BLUE) benchmark to facilitate research in the development of pre-training language representations in the biomedicine domain. The benchmark consists of five tasks with ten datasets that cover both biomedical and clinical texts with different dataset sizes and difficulties. We also evaluate several baselines based on BERT and ELMo and find that the BERT model pre-trained on PubMed abstracts and MIMIC-III clinical notes achieves the best results. We make the datasets, pre-trained models, and codes publicly available at https://github.com/ncbi-nlp/BLUE_Benchmark.
LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models
Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks. (2) Scale: To our knowledge, LexEval is currently the largest Chinese legal evaluation dataset, comprising 23 tasks and 14,150 questions. (3) Data: we utilize formatted existing datasets, exam datasets and newly annotated datasets by legal experts to comprehensively evaluate the various capabilities of LLMs. LexEval not only focuses on the ability of LLMs to apply fundamental legal knowledge but also dedicates efforts to examining the ethical issues involved in their application. We evaluated 38 open-source and commercial LLMs and obtained some interesting findings. The experiments and findings offer valuable insights into the challenges and potential solutions for developing Chinese legal systems and LLM evaluation pipelines. The LexEval dataset and leaderboard are publicly available at https://github.com/CSHaitao/LexEval and will be continuously updated.
Benchmarking Foundation Models with Language-Model-as-an-Examiner
Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.
RoMath: A Mathematical Reasoning Benchmark in Romanian
Mathematics has long been conveyed through natural language, primarily for human understanding. With the rise of mechanized mathematics and proof assistants, there is a growing need to understand informal mathematical text, yet most existing benchmarks focus solely on English, overlooking other languages. This paper introduces RoMath, a Romanian mathematical reasoning benchmark suite comprising three datasets: RoMath-Baccalaureate, RoMath-Competitions and RoMath-Synthetic, which cover a range of mathematical domains and difficulty levels, aiming to improve non-English language models and promote multilingual AI development. By focusing on Romanian, a low-resource language with unique linguistic features, RoMath addresses the limitations of Anglo-centric models and emphasizes the need for dedicated resources beyond simple automatic translation. We benchmark several open-weight language models, highlighting the importance of creating resources for underrepresented languages. We make the code and dataset available.
INCLUDE: Evaluating Multilingual Language Understanding with Regional Knowledge
The performance differential of large language models (LLM) between languages hinders their effective deployment in many regions, inhibiting the potential economic and societal value of generative AI tools in many communities. However, the development of functional LLMs in many languages (\ie, multilingual LLMs) is bottlenecked by the lack of high-quality evaluation resources in languages other than English. Moreover, current practices in multilingual benchmark construction often translate English resources, ignoring the regional and cultural knowledge of the environments in which multilingual systems would be used. In this work, we construct an evaluation suite of 197,243 QA pairs from local exam sources to measure the capabilities of multilingual LLMs in a variety of regional contexts. Our novel resource, INCLUDE, is a comprehensive knowledge- and reasoning-centric benchmark across 44 written languages that evaluates multilingual LLMs for performance in the actual language environments where they would be deployed.
IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian languages
A cornerstone in AI research has been the creation and adoption of standardized training and test datasets to earmark the progress of state-of-the-art models. A particularly successful example is the GLUE dataset for training and evaluating Natural Language Understanding (NLU) models for English. The large body of research around self-supervised BERT-based language models revolved around performance improvements on NLU tasks in GLUE. To evaluate language models in other languages, several language-specific GLUE datasets were created. The area of speech language understanding (SLU) has followed a similar trajectory. The success of large self-supervised models such as wav2vec2 enable creation of speech models with relatively easy to access unlabelled data. These models can then be evaluated on SLU tasks, such as the SUPERB benchmark. In this work, we extend this to Indic languages by releasing the IndicSUPERB benchmark. Specifically, we make the following three contributions. (i) We collect Kathbath containing 1,684 hours of labelled speech data across 12 Indian languages from 1,218 contributors located in 203 districts in India. (ii) Using Kathbath, we create benchmarks across 6 speech tasks: Automatic Speech Recognition, Speaker Verification, Speaker Identification (mono/multi), Language Identification, Query By Example, and Keyword Spotting for 12 languages. (iii) On the released benchmarks, we train and evaluate different self-supervised models alongside a commonly used baseline FBANK. We show that language-specific fine-tuned models are more accurate than baseline on most of the tasks, including a large gap of 76\% for the Language Identification task. However, for speaker identification, self-supervised models trained on large datasets demonstrate an advantage. We hope IndicSUPERB contributes to the progress of developing speech language understanding models for Indian languages.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark
We present bgGLUE(Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io/, and we hope that it will enable further advancements in developing NLU models for Bulgarian.
CodeCriticBench: A Holistic Code Critique Benchmark for Large Language Models
The critique capacity of Large Language Models (LLMs) is essential for reasoning abilities, which can provide necessary suggestions (e.g., detailed analysis and constructive feedback). Therefore, how to evaluate the critique capacity of LLMs has drawn great attention and several critique benchmarks have been proposed. However, existing critique benchmarks usually have the following limitations: (1). Focusing on diverse reasoning tasks in general domains and insufficient evaluation on code tasks (e.g., only covering code generation task), where the difficulty of queries is relatively easy (e.g., the code queries of CriticBench are from Humaneval and MBPP). (2). Lacking comprehensive evaluation from different dimensions. To address these limitations, we introduce a holistic code critique benchmark for LLMs called CodeCriticBench. Specifically, our CodeCriticBench includes two mainstream code tasks (i.e., code generation and code QA) with different difficulties. Besides, the evaluation protocols include basic critique evaluation and advanced critique evaluation for different characteristics, where fine-grained evaluation checklists are well-designed for advanced settings. Finally, we conduct extensive experimental results of existing LLMs, which show the effectiveness of CodeCriticBench.
HAE-RAE Bench: Evaluation of Korean Knowledge in Language Models
Large Language Models (LLMs) trained on massive corpora demonstrate impressive capabilities in a wide range of tasks. While there are ongoing efforts to adapt these models to languages beyond English, the attention given to their evaluation methodologies remains limited. Current multilingual benchmarks often rely on back translations or re-implementations of English tests, limiting their capacity to capture unique cultural and linguistic nuances. To bridge this gap for the Korean language, we introduce HAE-RAE Bench, a dataset curated to challenge models lacking Korean cultural and contextual depth. The dataset encompasses six downstream tasks across four domains: vocabulary, history, general knowledge, and reading comprehension. Contrary to traditional evaluation suites focused on token or sequence classification and specific mathematical or logical reasoning, HAE-RAE Bench emphasizes a model's aptitude for recalling Korean-specific knowledge and cultural contexts. Comparative analysis with prior Korean benchmarks indicates that the HAE-RAE Bench presents a greater challenge to non-native models, by disturbing abilities and knowledge learned from English being transferred.
ERASER: A Benchmark to Evaluate Rationalized NLP Models
State-of-the-art models in NLP are now predominantly based on deep neural networks that are opaque in terms of how they come to make predictions. This limitation has increased interest in designing more interpretable deep models for NLP that reveal the `reasoning' behind model outputs. But work in this direction has been conducted on different datasets and tasks with correspondingly unique aims and metrics; this makes it difficult to track progress. We propose the Evaluating Rationales And Simple English Reasoning (ERASER) benchmark to advance research on interpretable models in NLP. This benchmark comprises multiple datasets and tasks for which human annotations of "rationales" (supporting evidence) have been collected. We propose several metrics that aim to capture how well the rationales provided by models align with human rationales, and also how faithful these rationales are (i.e., the degree to which provided rationales influenced the corresponding predictions). Our hope is that releasing this benchmark facilitates progress on designing more interpretable NLP systems. The benchmark, code, and documentation are available at https://www.eraserbenchmark.com/
CAMEL-Bench: A Comprehensive Arabic LMM Benchmark
Recent years have witnessed a significant interest in developing large multimodal models (LMMs) capable of performing various visual reasoning and understanding tasks. This has led to the introduction of multiple LMM benchmarks to evaluate LMMs on different tasks. However, most existing LMM evaluation benchmarks are predominantly English-centric. In this work, we develop a comprehensive LMM evaluation benchmark for the Arabic language to represent a large population of over 400 million speakers. The proposed benchmark, named CAMEL-Bench, comprises eight diverse domains and 38 sub-domains including, multi-image understanding, complex visual perception, handwritten document understanding, video understanding, medical imaging, plant diseases, and remote sensing-based land use understanding to evaluate broad scenario generalizability. Our CAMEL-Bench comprises around 29,036 questions that are filtered from a larger pool of samples, where the quality is manually verified by native speakers to ensure reliable model assessment. We conduct evaluations of both closed-source, including GPT-4 series, and open-source LMMs. Our analysis reveals the need for substantial improvement, especially among the best open-source models, with even the closed-source GPT-4o achieving an overall score of 62%. Our benchmark and evaluation scripts are open-sourced.
τ-bench: A Benchmark for Tool-Agent-User Interaction in Real-World Domains
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose tau-bench, a benchmark emulating dynamic conversations between a user (simulated by language models) and a language agent provided with domain-specific API tools and policy guidelines. We employ an efficient and faithful evaluation process that compares the database state at the end of a conversation with the annotated goal state. We also propose a new metric (pass^k) to evaluate the reliability of agent behavior over multiple trials. Our experiments show that even state-of-the-art function calling agents (like gpt-4o) succeed on <50% of the tasks, and are quite inconsistent (pass^8 <25% in retail). Our findings point to the need for methods that can improve the ability of agents to act consistently and follow rules reliably.
Investigating Data Contamination in Modern Benchmarks for Large Language Models
Recent observations have underscored a disparity between the inflated benchmark scores and the actual performance of LLMs, raising concerns about potential contamination of evaluation benchmarks. This issue is especially critical for closed-source models and certain open-source models where training data transparency is lacking. In this paper we study data contamination by proposing two methods tailored for both open-source and proprietary LLMs. We first introduce a retrieval-based system to explore potential overlaps between evaluation benchmarks and pretraining corpora. We further present a novel investigation protocol named Testset Slot Guessing (TS-Guessing), applicable to both open and proprietary models. This approach entails masking a wrong answer in a multiple-choice question and prompting the model to fill in the gap. Additionally, it involves obscuring an unlikely word in an evaluation example and asking the model to produce it. We find that certain commercial LLMs could surprisingly guess the missing option in various test sets. Specifically, in the TruthfulQA benchmark, we find that LLMs exhibit notable performance improvement when provided with additional metadata in the benchmark. Further, in the MMLU benchmark, ChatGPT and GPT-4 demonstrated an exact match rate of 52\% and 57\%, respectively, in guessing the missing options in benchmark test data. We hope these results underscore the need for more robust evaluation methodologies and benchmarks in the field.
SCALE: Scaling up the Complexity for Advanced Language Model Evaluation
Recent strides in Large Language Models (LLMs) have saturated many NLP benchmarks (even professional domain-specific ones), emphasizing the need for novel, more challenging novel ones to properly assess LLM capabilities. In this paper, we introduce a novel NLP benchmark that poses challenges to current LLMs across four key dimensions: processing long documents (up to 50K tokens), utilizing domain specific knowledge (embodied in legal texts), multilingual understanding (covering five languages), and multitasking (comprising legal document to document Information Retrieval, Court View Generation, Leading Decision Summarization, Citation Extraction, and eight challenging Text Classification tasks). Our benchmark comprises diverse legal NLP datasets from the Swiss legal system, allowing for a comprehensive study of the underlying Non-English, inherently multilingual, federal legal system. Despite recent advances, efficiently processing long documents for intense review/analysis tasks remains an open challenge for language models. Also, comprehensive, domain-specific benchmarks requiring high expertise to develop are rare, as are multilingual benchmarks. This scarcity underscores our contribution's value, considering most public models are trained predominantly on English corpora, while other languages remain understudied, particularly for practical domain-specific NLP tasks. Our benchmark allows for testing and advancing the state-of-the-art LLMs. As part of our study, we evaluate several pre-trained multilingual language models on our benchmark to establish strong baselines as a point of reference. Despite the large size of our datasets (tens to hundreds of thousands of examples), existing publicly available models struggle with most tasks, even after in-domain pretraining. We publish all resources (benchmark suite, pre-trained models, code) under a fully permissive open CC BY-SA license.
ML-Dev-Bench: Comparative Analysis of AI Agents on ML development workflows
In this report, we present ML-Dev-Bench, a benchmark aimed at testing agentic capabilities on applied Machine Learning development tasks. While existing benchmarks focus on isolated coding tasks or Kaggle-style competitions, ML-Dev-Bench tests agents' ability to handle the full complexity of ML development workflows. The benchmark assesses performance across critical aspects including dataset handling, model training, improving existing models, debugging, and API integration with popular ML tools. We evaluate three agents - ReAct, Openhands, and AIDE - on a diverse set of 30 tasks, providing insights into their strengths and limitations in handling practical ML development challenges. We open source the benchmark for the benefit of the community at https://github.com/ml-dev-bench/ml-dev-bench{https://github.com/ml-dev-bench/ml-dev-bench}.
Evaluating Cross-Domain Text-to-SQL Models and Benchmarks
Text-to-SQL benchmarks play a crucial role in evaluating the progress made in the field and the ranking of different models. However, accurately matching a model-generated SQL query to a reference SQL query in a benchmark fails for various reasons, such as underspecified natural language queries, inherent assumptions in both model-generated and reference queries, and the non-deterministic nature of SQL output under certain conditions. In this paper, we conduct an extensive study of several prominent cross-domain text-to-SQL benchmarks and re-evaluate some of the top-performing models within these benchmarks, by both manually evaluating the SQL queries and rewriting them in equivalent expressions. Our evaluation reveals that attaining a perfect performance on these benchmarks is unfeasible due to the multiple interpretations that can be derived from the provided samples. Furthermore, we find that the true performance of the models is underestimated and their relative performance changes after a re-evaluation. Most notably, our evaluation reveals a surprising discovery: a recent GPT4-based model surpasses the gold standard reference queries in the Spider benchmark in our human evaluation. This finding highlights the importance of interpreting benchmark evaluations cautiously, while also acknowledging the critical role of additional independent evaluations in driving advancements in the field.
RuMedBench: A Russian Medical Language Understanding Benchmark
The paper describes the open Russian medical language understanding benchmark covering several task types (classification, question answering, natural language inference, named entity recognition) on a number of novel text sets. Given the sensitive nature of the data in healthcare, such a benchmark partially closes the problem of Russian medical dataset absence. We prepare the unified format labeling, data split, and evaluation metrics for new tasks. The remaining tasks are from existing datasets with a few modifications. A single-number metric expresses a model's ability to cope with the benchmark. Moreover, we implement several baseline models, from simple ones to neural networks with transformer architecture, and release the code. Expectedly, the more advanced models yield better performance, but even a simple model is enough for a decent result in some tasks. Furthermore, for all tasks, we provide a human evaluation. Interestingly the models outperform humans in the large-scale classification tasks. However, the advantage of natural intelligence remains in the tasks requiring more knowledge and reasoning.
Towards Evaluating and Building Versatile Large Language Models for Medicine
In this study, we present MedS-Bench, a comprehensive benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts. Unlike existing benchmarks that focus on multiple-choice question answering, MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation, among others. We evaluated six leading LLMs, e.g., MEDITRON, Mistral, InternLM 2, Llama 3, GPT-4, and Claude-3.5 using few-shot prompting, and found that even the most sophisticated models struggle with these complex tasks. To address these limitations, we developed MedS-Ins, a large-scale instruction tuning dataset for medicine. MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks. To demonstrate the dataset's utility, we conducted a proof-of-concept experiment by performing instruction tuning on a lightweight, open-source medical language model. The resulting model, MMedIns-Llama 3, significantly outperformed existing models across nearly all clinical tasks. To promote further advancements in the application of LLMs to clinical challenges, we have made the MedS-Ins dataset fully accessible and invite the research community to contribute to its expansion.Additionally, we have launched a dynamic leaderboard for MedS-Bench, which we plan to regularly update the test set to track progress and enhance the adaptation of general LLMs to the medical domain. Leaderboard: https://henrychur.github.io/MedS-Bench/. Github: https://github.com/MAGIC-AI4Med/MedS-Ins.
Benchmark Inflation: Revealing LLM Performance Gaps Using Retro-Holdouts
The training data for many Large Language Models (LLMs) is contaminated with test data. This means that public benchmarks used to assess LLMs are compromised, suggesting a performance gap between benchmark scores and actual capabilities. Ideally, a private holdout set could be used to accurately verify scores. Unfortunately, such datasets do not exist for most benchmarks, and post-hoc construction of sufficiently similar datasets is non-trivial. To address these issues, we introduce a systematic methodology for (i) retrospectively constructing a holdout dataset for a target dataset, (ii) demonstrating the statistical indistinguishability of this retro-holdout dataset, and (iii) comparing LLMs on the two datasets to quantify the performance gap due to the dataset's public availability. Applying these methods to TruthfulQA, we construct and release Retro-Misconceptions, on which we evaluate twenty LLMs and find that some have inflated scores by as much as 16 percentage points. Our results demonstrate that public benchmark scores do not always accurately assess model properties, and underscore the importance of improved data practices in the field.
SpreadsheetBench: Towards Challenging Real World Spreadsheet Manipulation
We introduce SpreadsheetBench, a challenging spreadsheet manipulation benchmark exclusively derived from real-world scenarios, designed to immerse current large language models (LLMs) in the actual workflow of spreadsheet users. Unlike existing benchmarks that rely on synthesized queries and simplified spreadsheet files, SpreadsheetBench is built from 912 real questions gathered from online Excel forums, which reflect the intricate needs of users. The associated spreadsheets from the forums contain a variety of tabular data such as multiple tables, non-standard relational tables, and abundant non-textual elements. Furthermore, we propose a more reliable evaluation metric akin to online judge platforms, where multiple spreadsheet files are created as test cases for each instruction, ensuring the evaluation of robust solutions capable of handling spreadsheets with varying values. Our comprehensive evaluation of various LLMs under both single-round and multi-round inference settings reveals a substantial gap between the state-of-the-art (SOTA) models and human performance, highlighting the benchmark's difficulty.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
Dolphin: A Challenging and Diverse Benchmark for Arabic NLG
We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several models on our benchmark, allowing us to set strong baselines against which researchers can compare.
IsoBench: Benchmarking Multimodal Foundation Models on Isomorphic Representations
Current foundation models exhibit impressive capabilities when prompted either with text only or with both image and text inputs. But do their capabilities change depending on the input modality? In this work, we propose IsoBench, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple isomorphic representations of inputs, such as visual, textual, and mathematical presentations. IsoBench provides fine-grained feedback to diagnose performance gaps caused by the form of the representation. Across various foundation models, we observe that on the same problem, models have a consistent preference towards textual representations. Most prominently, when evaluated on all IsoBench problems, Claude-3 Opus performs 28.7 points worse when provided with images instead of text; similarly, GPT-4 Turbo is 18.7 points worse and Gemini Pro is 14.9 points worse. Finally, we present two prompting techniques, IsoCombination and IsoScratchPad, which improve model performance by considering combinations of, and translations between, different input representations.
MultiChartQA: Benchmarking Vision-Language Models on Multi-Chart Problems
Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities across various tasks, including visual question answering and chart comprehension, yet existing benchmarks for chart-related tasks fall short in capturing the complexity of real-world multi-chart scenarios. Current benchmarks primarily focus on single-chart tasks, neglecting the multi-hop reasoning required to extract and integrate information from multiple charts, which is essential in practical applications. To fill this gap, we introduce MultiChartQA, a benchmark that evaluates MLLMs' capabilities in four key areas: direct question answering, parallel question answering, comparative reasoning, and sequential reasoning. Our evaluation of a wide range of MLLMs reveals significant performance gaps compared to humans. These results highlight the challenges in multi-chart comprehension and the potential of MultiChartQA to drive advancements in this field. Our code and data are available at https://github.com/Zivenzhu/Multi-chart-QA
ProverbEval: Exploring LLM Evaluation Challenges for Low-resource Language Understanding
With the rapid development of evaluation datasets to assess LLMs understanding across a wide range of subjects and domains, identifying a suitable language understanding benchmark has become increasingly challenging. In this work, we explore LLM evaluation challenges for low-resource language understanding and introduce ProverbEval, LLM evaluation benchmark for low-resource languages based on proverbs to focus on low-resource language understanding in culture-specific scenarios. We benchmark various LLMs and explore factors that create variability in the benchmarking process. We observed performance variances of up to 50%, depending on the order in which answer choices were presented in multiple-choice tasks. Native language proverb descriptions significantly improve tasks such as proverb generation, contributing to improved outcomes. Additionally, monolingual evaluations consistently outperformed their cross-lingual counterparts. We argue special attention must be given to the order of choices, choice of prompt language, task variability, and generation tasks when creating LLM evaluation benchmarks.
Open Ko-LLM Leaderboard2: Bridging Foundational and Practical Evaluation for Korean LLMs
The Open Ko-LLM Leaderboard has been instrumental in benchmarking Korean Large Language Models (LLMs), yet it has certain limitations. Notably, the disconnect between quantitative improvements on the overly academic leaderboard benchmarks and the qualitative impact of the models should be addressed. Furthermore, the benchmark suite is largely composed of translated versions of their English counterparts, which may not fully capture the intricacies of the Korean language. To address these issues, we propose Open Ko-LLM Leaderboard2, an improved version of the earlier Open Ko-LLM Leaderboard. The original benchmarks are entirely replaced with new tasks that are more closely aligned with real-world capabilities. Additionally, four new native Korean benchmarks are introduced to better reflect the distinct characteristics of the Korean language. Through these refinements, Open Ko-LLM Leaderboard2 seeks to provide a more meaningful evaluation for advancing Korean LLMs.
Evaluating GPT-4 and ChatGPT on Japanese Medical Licensing Examinations
As large language models (LLMs) gain popularity among speakers of diverse languages, we believe that it is crucial to benchmark them to better understand model behaviors, failures, and limitations in languages beyond English. In this work, we evaluate LLM APIs (ChatGPT, GPT-3, and GPT-4) on the Japanese national medical licensing examinations from the past five years, including the current year. Our team comprises native Japanese-speaking NLP researchers and a practicing cardiologist based in Japan. Our experiments show that GPT-4 outperforms ChatGPT and GPT-3 and passes all six years of the exams, highlighting LLMs' potential in a language that is typologically distant from English. However, our evaluation also exposes critical limitations of the current LLM APIs. First, LLMs sometimes select prohibited choices that should be strictly avoided in medical practice in Japan, such as suggesting euthanasia. Further, our analysis shows that the API costs are generally higher and the maximum context size is smaller for Japanese because of the way non-Latin scripts are currently tokenized in the pipeline. We release our benchmark as Igaku QA as well as all model outputs and exam metadata. We hope that our results and benchmark will spur progress on more diverse applications of LLMs. Our benchmark is available at https://github.com/jungokasai/IgakuQA.
AC-EVAL: Evaluating Ancient Chinese Language Understanding in Large Language Models
Given the importance of ancient Chinese in capturing the essence of rich historical and cultural heritage, the rapid advancements in Large Language Models (LLMs) necessitate benchmarks that can effectively evaluate their understanding of ancient contexts. To meet this need, we present AC-EVAL, an innovative benchmark designed to assess the advanced knowledge and reasoning capabilities of LLMs within the context of ancient Chinese. AC-EVAL is structured across three levels of difficulty reflecting different facets of language comprehension: general historical knowledge, short text understanding, and long text comprehension. The benchmark comprises 13 tasks, spanning historical facts, geography, social customs, art, philosophy, classical poetry and prose, providing a comprehensive assessment framework. Our extensive evaluation of top-performing LLMs, tailored for both English and Chinese, reveals a substantial potential for enhancing ancient text comprehension. By highlighting the strengths and weaknesses of LLMs, AC-EVAL aims to promote their development and application forward in the realms of ancient Chinese language education and scholarly research. The AC-EVAL data and evaluation code are available at https://github.com/yuting-wei/AC-EVAL.
MathTutorBench: A Benchmark for Measuring Open-ended Pedagogical Capabilities of LLM Tutors
Evaluating the pedagogical capabilities of AI-based tutoring models is critical for making guided progress in the field. Yet, we lack a reliable, easy-to-use, and simple-to-run evaluation that reflects the pedagogical abilities of models. To fill this gap, we present MathTutorBench, an open-source benchmark for holistic tutoring model evaluation. MathTutorBench contains a collection of datasets and metrics that broadly cover tutor abilities as defined by learning sciences research in dialog-based teaching. To score the pedagogical quality of open-ended teacher responses, we train a reward model and show it can discriminate expert from novice teacher responses with high accuracy. We evaluate a wide set of closed- and open-weight models on MathTutorBench and find that subject expertise, indicated by solving ability, does not immediately translate to good teaching. Rather, pedagogy and subject expertise appear to form a trade-off that is navigated by the degree of tutoring specialization of the model. Furthermore, tutoring appears to become more challenging in longer dialogs, where simpler questioning strategies begin to fail. We release the benchmark, code, and leaderboard openly to enable rapid benchmarking of future models.
MILU: A Multi-task Indic Language Understanding Benchmark
Evaluating Large Language Models (LLMs) in low-resource and linguistically diverse languages remains a significant challenge in NLP, particularly for languages using non-Latin scripts like those spoken in India. Existing benchmarks predominantly focus on English, leaving substantial gaps in assessing LLM capabilities in these languages. We introduce MILU, a Multi task Indic Language Understanding Benchmark, a comprehensive evaluation benchmark designed to address this gap. MILU spans 8 domains and 42 subjects across 11 Indic languages, reflecting both general and culturally specific knowledge. With an India-centric design, incorporates material from regional and state-level examinations, covering topics such as local history, arts, festivals, and laws, alongside standard subjects like science and mathematics. We evaluate over 42 LLMs, and find that current LLMs struggle with MILU, with GPT-4o achieving the highest average accuracy at 72 percent. Open multilingual models outperform language-specific fine-tuned models, which perform only slightly better than random baselines. Models also perform better in high resource languages as compared to low resource ones. Domain-wise analysis indicates that models perform poorly in culturally relevant areas like Arts and Humanities, Law and Governance compared to general fields like STEM. To the best of our knowledge, MILU is the first of its kind benchmark focused on Indic languages, serving as a crucial step towards comprehensive cultural evaluation. All code, benchmarks, and artifacts will be made publicly available to foster open research.
MIA-Bench: Towards Better Instruction Following Evaluation of Multimodal LLMs
We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large language models (MLLMs) on their ability to strictly adhere to complex instructions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each crafted to challenge the models' compliance with layered instructions in generating accurate responses that satisfy specific requested patterns. Evaluation results from a wide array of state-of-the-art MLLMs reveal significant variations in performance, highlighting areas for improvement in instruction fidelity. Additionally, we create extra training data and explore supervised fine-tuning to enhance the models' ability to strictly follow instructions without compromising performance on other tasks. We hope this benchmark not only serves as a tool for measuring MLLM adherence to instructions, but also guides future developments in MLLM training methods.
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures
Evaluating large language models (LLMs) is challenging. Traditional ground-truth-based benchmarks fail to capture the comprehensiveness and nuance of real-world queries, while LLM-as-judge benchmarks suffer from grading biases and limited query quantity. Both of them may also become contaminated over time. User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. In this work, we propose MixEval, a new paradigm for establishing efficient, gold-standard LLM evaluation by strategically mixing off-the-shelf benchmarks. It bridges (1) comprehensive and well-distributed real-world user queries and (2) efficient and fairly-graded ground-truth-based benchmarks, by matching queries mined from the web with similar queries from existing benchmarks. Based on MixEval, we further build MixEval-Hard, which offers more room for model improvement. Our benchmarks' advantages lie in (1) a 0.96 model ranking correlation with Chatbot Arena arising from the highly impartial query distribution and grading mechanism, (2) fast, cheap, and reproducible execution (6% of the time and cost of MMLU), and (3) dynamic evaluation enabled by the rapid and stable data update pipeline. We provide extensive meta-evaluation and analysis for our and existing LLM benchmarks to deepen the community's understanding of LLM evaluation and guide future research directions.
SpecTool: A Benchmark for Characterizing Errors in Tool-Use LLMs
Evaluating the output of Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce SpecTool, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using SPECTOOL , we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use the analysis and insights from SPECTOOL to guide their error mitigation strategies.
HeSum: a Novel Dataset for Abstractive Text Summarization in Hebrew
While large language models (LLMs) excel in various natural language tasks in English, their performance in lower-resourced languages like Hebrew, especially for generative tasks such as abstractive summarization, remains unclear. The high morphological richness in Hebrew adds further challenges due to the ambiguity in sentence comprehension and the complexities in meaning construction. In this paper, we address this resource and evaluation gap by introducing HeSum, a novel benchmark specifically designed for abstractive text summarization in Modern Hebrew. HeSum consists of 10,000 article-summary pairs sourced from Hebrew news websites written by professionals. Linguistic analysis confirms HeSum's high abstractness and unique morphological challenges. We show that HeSum presents distinct difficulties for contemporary state-of-the-art LLMs, establishing it as a valuable testbed for generative language technology in Hebrew, and MRLs generative challenges in general.
WebApp1K: A Practical Code-Generation Benchmark for Web App Development
We introduce WebApp1K, a practical code-generation benchmark to measure LLM ability to develop web apps. This benchmark aims to calibrate LLM output and aid the models to progressively improve code correctness and functionality. The benchmark is lightweight and easy to run. We present the initial version of WebApp1K, and share our findings of running the benchmark against the latest frontier LLMs. First, open source LLMs deliver impressive performance, closely trailing behind GPT-4o and Claude 3.5. Second, model size has strong correlation with code correctness. Third, no prompting techniques have been found to lift performance either universally to all models, or significantly to a single model.
Efficient multi-prompt evaluation of LLMs
Most popular benchmarks for comparing LLMs rely on a limited set of prompt templates, which may not fully capture the LLMs' abilities and can affect the reproducibility of results on leaderboards. Many recent works empirically verify prompt sensitivity and advocate for changes in LLM evaluation. In this paper, we consider the problem of estimating the performance distribution across many prompt variants instead of finding a single prompt to evaluate with. We introduce PromptEval, a method for estimating performance across a large set of prompts borrowing strength across prompts and examples to produce accurate estimates under practical evaluation budgets. The resulting distribution can be used to obtain performance quantiles to construct various robust performance metrics (e.g., top 95% quantile or median). We prove that PromptEval consistently estimates the performance distribution and demonstrate its efficacy empirically on three prominent LLM benchmarks: MMLU, BIG-bench Hard, and LMentry. For example, PromptEval can accurately estimate performance quantiles across 100 prompt templates on MMLU with a budget equivalent to two single-prompt evaluations. Our code and data can be found at https://github.com/felipemaiapolo/prompt-eval.
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Supervised machine learning approaches have been increasingly used in accelerating electronic structure prediction as surrogates of first-principle computational methods, such as density functional theory (DFT). While numerous quantum chemistry datasets focus on chemical properties and atomic forces, the ability to achieve accurate and efficient prediction of the Hamiltonian matrix is highly desired, as it is the most important and fundamental physical quantity that determines the quantum states of physical systems and chemical properties. In this work, we generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories and 130,831 stable molecular geometries, based on the QM9 dataset. By designing benchmark tasks with various molecules, we show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules. Both the QH9 dataset and the baseline models are provided to the community through an open-source benchmark, which can be highly valuable for developing machine learning methods and accelerating molecular and materials design for scientific and technological applications. Our benchmark is publicly available at https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench.
Linguini: A benchmark for language-agnostic linguistic reasoning
We propose a new benchmark to measure a language model's linguistic reasoning skills without relying on pre-existing language-specific knowledge. The test covers 894 questions grouped in 160 problems across 75 (mostly) extremely low-resource languages, extracted from the International Linguistic Olympiad corpus. To attain high accuracy on this benchmark, models don't need previous knowledge of the tested language, as all the information needed to solve the linguistic puzzle is presented in the context. We find that, while all analyzed models rank below 25% accuracy, there is a significant gap between open and closed models, with the best-performing proprietary model at 24.05% and the best-performing open model at 8.84%.
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.
Nakdan: Professional Hebrew Diacritizer
We present a system for automatic diacritization of Hebrew text. The system combines modern neural models with carefully curated declarative linguistic knowledge and comprehensive manually constructed tables and dictionaries. Besides providing state of the art diacritization accuracy, the system also supports an interface for manual editing and correction of the automatic output, and has several features which make it particularly useful for preparation of scientific editions of Hebrew texts. The system supports Modern Hebrew, Rabbinic Hebrew and Poetic Hebrew. The system is freely accessible for all use at http://nakdanpro.dicta.org.il.
Program Synthesis with Large Language Models
This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.
MM-Eval: A Multilingual Meta-Evaluation Benchmark for LLM-as-a-Judge and Reward Models
Large language models (LLMs) are commonly used as evaluators in tasks (e.g., reward modeling, LLM-as-a-judge), where they act as proxies for human preferences or judgments. This leads to the need for meta-evaluation: evaluating the credibility of LLMs as evaluators. However, existing benchmarks primarily focus on English, offering limited insight into LLMs' effectiveness as evaluators in non-English contexts. To address this, we introduce MM-Eval, a multilingual meta-evaluation benchmark that covers 18 languages across six categories. MM-Eval evaluates various dimensions, including language-specific challenges like linguistics and language hallucinations. Evaluation results show that both proprietary and open-source language models have considerable room for improvement. Further analysis reveals a tendency for these models to assign middle-ground scores to low-resource languages. We publicly release our benchmark and code.
Top Leaderboard Ranking = Top Coding Proficiency, Always? EvoEval: Evolving Coding Benchmarks via LLM
LLMs have become the go-to choice for code generation tasks, with an exponential increase in the training, development, and usage of LLMs specifically for code generation. To evaluate the ability of LLMs on code, both academic and industry practitioners rely on popular handcrafted benchmarks. However, prior benchmarks contain only a very limited set of problems, both in quantity and variety. Further, due to popularity and age, many benchmarks are prone to data leakage where example solutions can be readily found on the web and thus potentially in training data. Such limitations inevitably lead us to inquire: Is the leaderboard performance on existing benchmarks reliable and comprehensive enough to measure the program synthesis ability of LLMs? To address this, we introduce EvoEval -- a program synthesis benchmark suite created by evolving existing benchmarks into different targeted domains for a comprehensive evaluation of LLM coding abilities. Our study on 51 LLMs shows that compared to the high performance obtained on standard benchmarks like HumanEval, there is a significant drop in performance (on average 39.4%) when using EvoEval. Additionally, the decrease in performance can range from 19.6% to 47.7%, leading to drastic ranking changes amongst LLMs and showing potential overfitting of existing benchmarks. Furthermore, we showcase various insights, including the brittleness of instruction-following models when encountering rewording or subtle changes as well as the importance of learning problem composition and decomposition. EvoEval not only provides comprehensive benchmarks, but can be used to further evolve arbitrary problems to keep up with advances and the ever-changing landscape of LLMs for code. We have open-sourced our benchmarks, tools, and complete LLM generations at https://github.com/evo-eval/evoeval
UCFE: A User-Centric Financial Expertise Benchmark for Large Language Models
This paper introduces the UCFE: User-Centric Financial Expertise benchmark, an innovative framework designed to evaluate the ability of large language models (LLMs) to handle complex real-world financial tasks. UCFE benchmark adopts a hybrid approach that combines human expert evaluations with dynamic, task-specific interactions to simulate the complexities of evolving financial scenarios. Firstly, we conducted a user study involving 804 participants, collecting their feedback on financial tasks. Secondly, based on this feedback, we created our dataset that encompasses a wide range of user intents and interactions. This dataset serves as the foundation for benchmarking 12 LLM services using the LLM-as-Judge methodology. Our results show a significant alignment between benchmark scores and human preferences, with a Pearson correlation coefficient of 0.78, confirming the effectiveness of the UCFE dataset and our evaluation approach. UCFE benchmark not only reveals the potential of LLMs in the financial sector but also provides a robust framework for assessing their performance and user satisfaction.The benchmark dataset and evaluation code are available.
LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code
Large Language Models (LLMs) applied to code-related applications have emerged as a prominent field, attracting significant interest from both academia and industry. However, as new and improved LLMs are developed, existing evaluation benchmarks (e.g., HumanEval, MBPP) are no longer sufficient for assessing their capabilities. In this work, we propose LiveCodeBench, a comprehensive and contamination-free evaluation of LLMs for code, which continuously collects new problems over time from contests across three competition platforms, namely LeetCode, AtCoder, and CodeForces. Notably, our benchmark also focuses on a broader range of code related capabilities, such as self-repair, code execution, and test output prediction, beyond just code generation. Currently, LiveCodeBench hosts four hundred high-quality coding problems that were published between May 2023 and February 2024. We have evaluated 9 base LLMs and 20 instruction-tuned LLMs on LiveCodeBench. We present empirical findings on contamination, holistic performance comparisons, potential overfitting in existing benchmarks as well as individual model comparisons. We will release all prompts and model completions for further community analysis, along with a general toolkit for adding new scenarios and model
A Novel Challenge Set for Hebrew Morphological Disambiguation and Diacritics Restoration
One of the primary tasks of morphological parsers is the disambiguation of homographs. Particularly difficult are cases of unbalanced ambiguity, where one of the possible analyses is far more frequent than the others. In such cases, there may not exist sufficient examples of the minority analyses in order to properly evaluate performance, nor to train effective classifiers. In this paper we address the issue of unbalanced morphological ambiguities in Hebrew. We offer a challenge set for Hebrew homographs -- the first of its kind -- containing substantial attestation of each analysis of 21 Hebrew homographs. We show that the current SOTA of Hebrew disambiguation performs poorly on cases of unbalanced ambiguity. Leveraging our new dataset, we achieve a new state-of-the-art for all 21 words, improving the overall average F1 score from 0.67 to 0.95. Our resulting annotated datasets are made publicly available for further research.
One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks
Language is not monolithic. While many benchmarks are used as proxies to systematically estimate Large Language Models' (LLM) performance in real-life tasks, they tend to ignore the nuances of within-language variation and thus fail to model the experience of speakers of minority dialects. Focusing on African American Vernacular English (AAVE), we present the first study on LLMs' fairness and robustness to a dialect in canonical reasoning tasks (algorithm, math, logic, and comprehensive reasoning). We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. The result of this effort is ReDial, a dialectal benchmark comprising 1.2K+ parallel query pairs in Standardized English and AAVE. We use ReDial to evaluate state-of-the-art LLMs, including GPT-4o/4/3.5-turbo, LLaMA-3.1/3, Mistral, and Phi-3. We find that, compared to Standardized English, almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Furthermore, AAVE queries can degrade performance more substantially than misspelled texts in Standardized English, even when LLMs are more familiar with the AAVE queries. Finally, asking models to rephrase questions in Standardized English does not close the performance gap but generally introduces higher costs. Overall, our findings indicate that LLMs provide unfair service to dialect users in complex reasoning tasks. Code can be found at https://github.com/fangru-lin/redial_dialect_robustness_fairness.git.
STEER-ME: Assessing the Microeconomic Reasoning of Large Language Models
How should one judge whether a given large language model (LLM) can reliably perform economic reasoning? Most existing LLM benchmarks focus on specific applications and fail to present the model with a rich variety of economic tasks. A notable exception is Raman et al. [2024], who offer an approach for comprehensively benchmarking strategic decision-making; however, this approach fails to address the non-strategic settings prevalent in microeconomics, such as supply-and-demand analysis. We address this gap by taxonomizing microeconomic reasoning into 58 distinct elements, focusing on the logic of supply and demand, each grounded in up to 10 distinct domains, 5 perspectives, and 3 types. The generation of benchmark data across this combinatorial space is powered by a novel LLM-assisted data generation protocol that we dub auto-STEER, which generates a set of questions by adapting handwritten templates to target new domains and perspectives. Because it offers an automated way of generating fresh questions, auto-STEER mitigates the risk that LLMs will be trained to over-fit evaluation benchmarks; we thus hope that it will serve as a useful tool both for evaluating and fine-tuning models for years to come. We demonstrate the usefulness of our benchmark via a case study on 27 LLMs, ranging from small open-source models to the current state of the art. We examined each model's ability to solve microeconomic problems across our whole taxonomy and present the results across a range of prompting strategies and scoring metrics.
MedConceptsQA -- Open Source Medical Concepts QA Benchmark
We present MedConceptsQA, a dedicated open source benchmark for medical concepts question answering. The benchmark comprises of questions of various medical concepts across different vocabularies: diagnoses, procedures, and drugs. The questions are categorized into three levels of difficulty: easy, medium, and hard. We conducted evaluations of the benchmark using various Large Language Models. Our findings show that pre-trained clinical Large Language Models achieved accuracy levels close to random guessing on this benchmark, despite being pre-trained on medical data. However, GPT-4 achieves an absolute average improvement of nearly 27%-37% (27% for zero-shot learning and 37% for few-shot learning) when compared to clinical Large Language Models. Our benchmark serves as a valuable resource for evaluating the understanding and reasoning of medical concepts by Large Language Models. Our benchmark is available at https://huggingface.co./datasets/ofir408/MedConceptsQA
Jasper and Stella: distillation of SOTA embedding models
A crucial component of many deep learning applications (such as FAQ and RAG) is dense retrieval, in which embedding models are used to convert raw text to numerical vectors and then get the most similar text by MIPS (Maximum Inner Product Search). Some text embedding benchmarks (e.g. MTEB, BEIR, and AIR-Bench) have been established to evaluate embedding models accurately. Thanks to these benchmarks, we can use SOTA models; however, the deployment and application of these models in industry were hampered by their large vector dimensions and numerous parameters. To alleviate this problem, 1) we present a distillation technique that can enable a smaller student model to achieve good performance. 2) Inspired by MRL we present a training approach of reducing the vector dimensions based on its own vectors or its teacher vectors. 3) We do simple yet effective alignment training between images and text to make our model a multimodal encoder. We trained Stella and Jasper models using the technologies above and achieved high scores on the MTEB leaderboard. We release the model and data at Hugging Face Hub (https://huggingface.co./infgrad/jasper_en_vision_language_v1) and the training logs are at https://api.wandb.ai/links/dunnzhang0/z8jqoqpb.
Lifelong Benchmarks: Efficient Model Evaluation in an Era of Rapid Progress
Standardized benchmarks drive progress in machine learning. However, with repeated testing, the risk of overfitting grows as algorithms over-exploit benchmark idiosyncrasies. In our work, we seek to mitigate this challenge by compiling ever-expanding large-scale benchmarks called Lifelong Benchmarks. As exemplars of our approach, we create Lifelong-CIFAR10 and Lifelong-ImageNet, containing (for now) 1.69M and 1.98M test samples, respectively. While reducing overfitting, lifelong benchmarks introduce a key challenge: the high cost of evaluating a growing number of models across an ever-expanding sample set. To address this challenge, we also introduce an efficient evaluation framework: Sort \& Search (S&S), which reuses previously evaluated models by leveraging dynamic programming algorithms to selectively rank and sub-select test samples, enabling cost-effective lifelong benchmarking. Extensive empirical evaluations across 31,000 models demonstrate that S&S achieves highly-efficient approximate accuracy measurement, reducing compute cost from 180 GPU days to 5 GPU hours (1000x reduction) on a single A100 GPU, with low approximation error. As such, lifelong benchmarks offer a robust, practical solution to the "benchmark exhaustion" problem.
OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain
As a typical and practical application of Large Language Models (LLMs), Retrieval-Augmented Generation (RAG) techniques have gained extensive attention, particularly in vertical domains where LLMs may lack domain-specific knowledge. In this paper, we introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain. Our benchmark is characterized by its multi-dimensional evaluation framework, including (1) a matrix-based RAG scenario evaluation system that categorizes queries into five task classes and 16 financial topics, leading to a structured assessment of diverse query scenarios; (2) a multi-dimensional evaluation data generation approach, which combines GPT-4-based automatic generation and human annotation, achieving an 87.47\% acceptance ratio in human evaluations on generated instances; (3) a multi-stage evaluation system that evaluates both retrieval and generation performance, result in a comprehensive evaluation on the RAG pipeline; and (4) robust evaluation metrics derived from rule-based and LLM-based ones, enhancing the reliability of assessments through manual annotations and supervised fine-tuning of an LLM evaluator. Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets and highlights the performance variations of RAG systems across diverse topics and tasks, revealing significant opportunities for RAG models to improve their capabilities in vertical domains. We open source the code of our benchmark in https://github.com/RUC-NLPIR/OmniEval{https://github.com/RUC-NLPIR/OmniEval}.
BERGEN: A Benchmarking Library for Retrieval-Augmented Generation
Retrieval-Augmented Generation allows to enhance Large Language Models with external knowledge. In response to the recent popularity of generative LLMs, many RAG approaches have been proposed, which involve an intricate number of different configurations such as evaluation datasets, collections, metrics, retrievers, and LLMs. Inconsistent benchmarking poses a major challenge in comparing approaches and understanding the impact of each component in the pipeline. In this work, we study best practices that lay the groundwork for a systematic evaluation of RAG and present BERGEN, an end-to-end library for reproducible research standardizing RAG experiments. In an extensive study focusing on QA, we benchmark different state-of-the-art retrievers, rerankers, and LLMs. Additionally, we analyze existing RAG metrics and datasets. Our open-source library BERGEN is available under https://github.com/naver/bergen.
ExecRepoBench: Multi-level Executable Code Completion Evaluation
Code completion has become an essential tool for daily software development. Existing evaluation benchmarks often employ static methods that do not fully capture the dynamic nature of real-world coding environments and face significant challenges, including limited context length, reliance on superficial evaluation metrics, and potential overfitting to training datasets. In this work, we introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench and the instruction corpora Repo-Instruct, aim at improving the functionality of open-source large language models (LLMs) in real-world coding scenarios that involve complex interdependencies across multiple files. ExecRepoBench includes 1.2K samples from active Python repositories. Plus, we present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units (e.g. statements, expressions, and functions). Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C based on the open-source model. Qwen2.5-Coder-Instruct-C is rigorously evaluated against existing benchmarks, including MultiPL-E and ExecRepoBench, which consistently outperforms prior baselines across all programming languages. The deployment of can be used as a high-performance, local service for programming development\url{https://execrepobench.github.io/}.
ECBD: Evidence-Centered Benchmark Design for NLP
Benchmarking is seen as critical to assessing progress in NLP. However, creating a benchmark involves many design decisions (e.g., which datasets to include, which metrics to use) that often rely on tacit, untested assumptions about what the benchmark is intended to measure or is actually measuring. There is currently no principled way of analyzing these decisions and how they impact the validity of the benchmark's measurements. To address this gap, we draw on evidence-centered design in educational assessments and propose Evidence-Centered Benchmark Design (ECBD), a framework which formalizes the benchmark design process into five modules. ECBD specifies the role each module plays in helping practitioners collect evidence about capabilities of interest. Specifically, each module requires benchmark designers to describe, justify, and support benchmark design choices -- e.g., clearly specifying the capabilities the benchmark aims to measure or how evidence about those capabilities is collected from model responses. To demonstrate the use of ECBD, we conduct case studies with three benchmarks: BoolQ, SuperGLUE, and HELM. Our analysis reveals common trends in benchmark design and documentation that could threaten the validity of benchmarks' measurements.
PutnamBench: Evaluating Neural Theorem-Provers on the Putnam Mathematical Competition
We present PutnamBench, a new multilingual benchmark for evaluating the ability of neural theorem-provers to solve competition mathematics problems. PutnamBench consists of 1697 hand-constructed formalizations of 640 theorems sourced from the William Lowell Putnam Mathematical Competition, the premier undergraduate-level mathematics competition in North America. All the theorems have formalizations in Lean 4 and Isabelle; a substantial subset also has Coq formalizations. Proving the theorems requires significant problem-solving ability and proficiency in a broad range of topics taught in undergraduate mathematics courses. We use PutnamBench to evaluate several established neural and symbolic theorem-provers. These approaches can only solve a handful of the PutnamBench problems, establishing the benchmark as a difficult open challenge for research on neural theorem-proving. PutnamBench is available at https://github.com/trishullab/PutnamBench.
FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models
The ability to follow instructions is crucial for Large Language Models (LLMs) to handle various real-world applications. Existing benchmarks primarily focus on evaluating pure response quality, rather than assessing whether the response follows constraints stated in the instruction. To fill this research gap, in this paper, we propose FollowBench, a Multi-level Fine-grained Constraints Following Benchmark for LLMs. FollowBench comprehensively includes five different types (i.e., Content, Situation, Style, Format, and Example) of fine-grained constraints. To enable a precise constraint following estimation on diverse difficulties, we introduce a Multi-level mechanism that incrementally adds a single constraint to the initial instruction at each increased level. To assess whether LLMs' outputs have satisfied every individual constraint, we propose to prompt strong LLMs with constraint-evolution paths to handle challenging open-ended instructions. By evaluating ten closed-source and open-source popular LLMs on FollowBench, we highlight the weaknesses of LLMs in instruction following and point towards potential avenues for future work. The data and code are publicly available at https://github.com/YJiangcm/FollowBench.
Language Models are Multilingual Chain-of-Thought Reasoners
We evaluate the reasoning abilities of large language models in multilingual settings. We introduce the Multilingual Grade School Math (MGSM) benchmark, by manually translating 250 grade-school math problems from the GSM8K dataset (Cobbe et al., 2021) into ten typologically diverse languages. We find that the ability to solve MGSM problems via chain-of-thought prompting emerges with increasing model scale, and that models have strikingly strong multilingual reasoning abilities, even in underrepresented languages such as Bengali and Swahili. Finally, we show that the multilingual reasoning abilities of language models extend to other tasks such as commonsense reasoning and word-in-context semantic judgment. The MGSM benchmark is publicly available at https://github.com/google-research/url-nlp.
Evaluation of Transfer Learning for Polish with a Text-to-Text Model
We introduce a new benchmark for assessing the quality of text-to-text models for Polish. The benchmark consists of diverse tasks and datasets: KLEJ benchmark adapted for text-to-text, en-pl translation, summarization, and question answering. In particular, since summarization and question answering lack benchmark datasets for the Polish language, we describe their construction and make them publicly available. Additionally, we present plT5 - a general-purpose text-to-text model for Polish that can be fine-tuned on various Natural Language Processing (NLP) tasks with a single training objective. Unsupervised denoising pre-training is performed efficiently by initializing the model weights with a multi-lingual T5 (mT5) counterpart. We evaluate the performance of plT5, mT5, Polish BART (plBART), and Polish GPT-2 (papuGaPT2). The plT5 scores top on all of these tasks except summarization, where plBART is best. In general (except for summarization), the larger the model, the better the results. The encoder-decoder architectures prove to be better than the decoder-only equivalent.
StackEval: Benchmarking LLMs in Coding Assistance
We present two comprehensive benchmarks to evaluate the performance of language models in coding assistance tasks, covering code writing, debugging, code review, and conceptual understanding. Our main contribution includes two curated datasets: StackEval, a large-scale benchmark derived from Stack Overflow questions, and StackUnseen, a dynamic benchmark featuring the most recent Stack Overflow content. These benchmarks offer novel insights into the capabilities and limitations of LLMs, particularly in handling new and emerging content. Additionally, we assess LLMs' proficiency as judges for coding tasks using a curated, human-annotated dataset, exploring their evaluation capabilities and potential biases, including whether they favor their own generated solutions. Our findings underscore the potential of these benchmarks to advance LLM development and application in coding assistance. To ensure reproducibility, we publicly share our datasets and evaluation code at https://github.com/ProsusAI/stack-eval .
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups.
BLEnD: A Benchmark for LLMs on Everyday Knowledge in Diverse Cultures and Languages
Large language models (LLMs) often lack culture-specific knowledge of daily life, especially across diverse regions and non-English languages. Existing benchmarks for evaluating LLMs' cultural sensitivities are limited to a single language or collected from online sources such as Wikipedia, which do not reflect the mundane everyday lifestyles of diverse regions. That is, information about the food people eat for their birthday celebrations, spices they typically use, musical instruments youngsters play, or the sports they practice in school is common cultural knowledge but uncommon in easily collected online sources, especially for underrepresented cultures. To address this issue, we introduce BLEnD, a hand-crafted benchmark designed to evaluate LLMs' everyday knowledge across diverse cultures and languages. BLEnD comprises 52.6k question-answer pairs from 16 countries/regions, in 13 different languages, including low-resource ones such as Amharic, Assamese, Azerbaijani, Hausa, and Sundanese. We construct the benchmark to include two formats of questions: short-answer and multiple-choice. We show that LLMs perform better for cultures that are highly represented online, with a maximum 57.34% difference in GPT-4, the best-performing model, in the short-answer format. For cultures represented by mid-to-high-resource languages, LLMs perform better in their local languages, but for cultures represented by low-resource languages, LLMs perform better in English than the local languages. We make our dataset publicly available at: https://github.com/nlee0212/BLEnD.
BIG-Bench Extra Hard
Large language models (LLMs) are increasingly deployed in everyday applications, demanding robust general reasoning capabilities and diverse reasoning skillset. However, current LLM reasoning benchmarks predominantly focus on mathematical and coding abilities, leaving a gap in evaluating broader reasoning proficiencies. One particular exception is the BIG-Bench dataset, which has served as a crucial benchmark for evaluating the general reasoning capabilities of LLMs, thanks to its diverse set of challenging tasks that allowed for a comprehensive assessment of general reasoning across various skills within a unified framework. However, recent advances in LLMs have led to saturation on BIG-Bench, and its harder version BIG-Bench Hard (BBH). State-of-the-art models achieve near-perfect scores on many tasks in BBH, thus diminishing its utility. To address this limitation, we introduce BIG-Bench Extra Hard (BBEH), a new benchmark designed to push the boundaries of LLM reasoning evaluation. BBEH replaces each task in BBH with a novel task that probes a similar reasoning capability but exhibits significantly increased difficulty. We evaluate various models on BBEH and observe a (harmonic) average accuracy of 9.8\% for the best general-purpose model and 44.8\% for the best reasoning-specialized model, indicating substantial room for improvement and highlighting the ongoing challenge of achieving robust general reasoning in LLMs. We release BBEH publicly at: https://github.com/google-deepmind/bbeh.
LLMzSzŁ: a comprehensive LLM benchmark for Polish
This article introduces the first comprehensive benchmark for the Polish language at this scale: LLMzSz{\L} (LLMs Behind the School Desk). It is based on a coherent collection of Polish national exams, including both academic and professional tests extracted from the archives of the Polish Central Examination Board. It covers 4 types of exams, coming from 154 domains. Altogether, it consists of almost 19k closed-ended questions. We investigate the performance of open-source multilingual, English, and Polish LLMs to verify LLMs' abilities to transfer knowledge between languages. Also, the correlation between LLMs and humans at model accuracy and exam pass rate levels is examined. We show that multilingual LLMs can obtain superior results over monolingual ones; however, monolingual models may be beneficial when model size matters. Our analysis highlights the potential of LLMs in assisting with exam validation, particularly in identifying anomalies or errors in examination tasks.
Offensive Hebrew Corpus and Detection using BERT
Offensive language detection has been well studied in many languages, but it is lagging behind in low-resource languages, such as Hebrew. In this paper, we present a new offensive language corpus in Hebrew. A total of 15,881 tweets were retrieved from Twitter. Each was labeled with one or more of five classes (abusive, hate, violence, pornographic, or none offensive) by Arabic-Hebrew bilingual speakers. The annotation process was challenging as each annotator is expected to be familiar with the Israeli culture, politics, and practices to understand the context of each tweet. We fine-tuned two Hebrew BERT models, HeBERT and AlephBERT, using our proposed dataset and another published dataset. We observed that our data boosts HeBERT performance by 2% when combined with D_OLaH. Fine-tuning AlephBERT on our data and testing on D_OLaH yields 69% accuracy, while fine-tuning on D_OLaH and testing on our data yields 57% accuracy, which may be an indication to the generalizability our data offers. Our dataset and fine-tuned models are available on GitHub and Huggingface.
The Knesset Corpus: An Annotated Corpus of Hebrew Parliamentary Proceedings
We present the Knesset Corpus, a corpus of Hebrew parliamentary proceedings containing over 30 million sentences (over 384 million tokens) from all the (plenary and committee) protocols held in the Israeli parliament between 1998 and 2022. Sentences are annotated with morpho-syntactic information and are associated with detailed meta-information reflecting demographic and political properties of the speakers, based on a large database of parliament members and factions that we compiled. We discuss the structure and composition of the corpus and the various processing steps we applied to it. To demonstrate the utility of this novel dataset we present two use cases. We show that the corpus can be used to examine historical developments in the style of political discussions by showing a reduction in lexical richness in the proceedings over time. We also investigate some differences between the styles of men and women speakers. These use cases exemplify the potential of the corpus to shed light on important trends in the Israeli society, supporting research in linguistics, political science, communication, law, etc.
DEsignBench: Exploring and Benchmarking DALL-E 3 for Imagining Visual Design
We introduce DEsignBench, a text-to-image (T2I) generation benchmark tailored for visual design scenarios. Recent T2I models like DALL-E 3 and others, have demonstrated remarkable capabilities in generating photorealistic images that align closely with textual inputs. While the allure of creating visually captivating images is undeniable, our emphasis extends beyond mere aesthetic pleasure. We aim to investigate the potential of using these powerful models in authentic design contexts. In pursuit of this goal, we develop DEsignBench, which incorporates test samples designed to assess T2I models on both "design technical capability" and "design application scenario." Each of these two dimensions is supported by a diverse set of specific design categories. We explore DALL-E 3 together with other leading T2I models on DEsignBench, resulting in a comprehensive visual gallery for side-by-side comparisons. For DEsignBench benchmarking, we perform human evaluations on generated images in DEsignBench gallery, against the criteria of image-text alignment, visual aesthetic, and design creativity. Our evaluation also considers other specialized design capabilities, including text rendering, layout composition, color harmony, 3D design, and medium style. In addition to human evaluations, we introduce the first automatic image generation evaluator powered by GPT-4V. This evaluator provides ratings that align well with human judgments, while being easily replicable and cost-efficient. A high-resolution version is available at https://github.com/design-bench/design-bench.github.io/raw/main/designbench.pdf?download=
SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models
Recent advances in large language models (LLMs) have demonstrated notable progress on many mathematical benchmarks. However, most of these benchmarks only feature problems grounded in junior and senior high school subjects, contain only multiple-choice questions, and are confined to a limited scope of elementary arithmetic operations. To address these issues, this paper introduces an expansive benchmark suite SciBench that aims to systematically examine the reasoning capabilities required for complex scientific problem solving. SciBench contains two carefully curated datasets: an open set featuring a range of collegiate-level scientific problems drawn from mathematics, chemistry, and physics textbooks, and a closed set comprising problems from undergraduate-level exams in computer science and mathematics. Based on the two datasets, we conduct an in-depth benchmark study of two representative LLMs with various prompting strategies. The results reveal that current LLMs fall short of delivering satisfactory performance, with an overall score of merely 35.80%. Furthermore, through a detailed user study, we categorize the errors made by LLMs into ten problem-solving abilities. Our analysis indicates that no single prompting strategy significantly outperforms others and some strategies that demonstrate improvements in certain problem-solving skills result in declines in other skills. We envision that SciBench will catalyze further developments in the reasoning abilities of LLMs, thereby ultimately contributing to scientific research and discovery.
BENCHAGENTS: Automated Benchmark Creation with Agent Interaction
Evaluations are limited by benchmark availability. As models evolve, there is a need to create benchmarks that can measure progress on new generative capabilities. However, creating new benchmarks through human annotations is slow and expensive, restricting comprehensive evaluations for any capability. We introduce BENCHAGENTS, a framework that methodically leverages large language models (LLMs) to automate benchmark creation for complex capabilities while inherently ensuring data and metric quality. BENCHAGENTS decomposes the benchmark creation process into planning, generation, data verification, and evaluation, each of which is executed by an LLM agent. These agents interact with each other and utilize human-in-the-loop feedback from benchmark developers to explicitly improve and flexibly control data diversity and quality. We use BENCHAGENTS to create benchmarks to evaluate capabilities related to planning and constraint satisfaction during text generation. We then use these benchmarks to study seven state-of-the-art models and extract new insights on common failure modes and model differences.
CHBench: A Chinese Dataset for Evaluating Health in Large Language Models
With the rapid development of large language models (LLMs), assessing their performance on health-related inquiries has become increasingly essential. It is critical that these models provide accurate and trustworthy health information, as their application in real-world contexts--where misinformation can have serious consequences for individuals seeking medical advice and support--depends on their reliability. In this work, we present CHBench, the first comprehensive Chinese Health-related Benchmark designed to evaluate LLMs' capabilities in understanding physical and mental health across diverse scenarios. CHBench includes 6,493 entries related to mental health and 2,999 entries focused on physical health, covering a broad spectrum of topics. This dataset serves as a foundation for evaluating Chinese LLMs' capacity to comprehend and generate accurate health-related information. Our extensive evaluations of four popular Chinese LLMs demonstrate that there remains considerable room for improvement in their understanding of health-related information. The code is available at https://github.com/TracyGuo2001/CHBench.
AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
Evaluation plays a crucial role in the advancement of information retrieval (IR) models. However, current benchmarks, which are based on predefined domains and human-labeled data, face limitations in addressing evaluation needs for emerging domains both cost-effectively and efficiently. To address this challenge, we propose the Automated Heterogeneous Information Retrieval Benchmark (AIR-Bench). AIR-Bench is distinguished by three key features: 1) Automated. The testing data in AIR-Bench is automatically generated by large language models (LLMs) without human intervention. 2) Heterogeneous. The testing data in AIR-Bench is generated with respect to diverse tasks, domains and languages. 3) Dynamic. The domains and languages covered by AIR-Bench are constantly augmented to provide an increasingly comprehensive evaluation benchmark for community developers. We develop a reliable and robust data generation pipeline to automatically create diverse and high-quality evaluation datasets based on real-world corpora. Our findings demonstrate that the generated testing data in AIR-Bench aligns well with human-labeled testing data, making AIR-Bench a dependable benchmark for evaluating IR models. The resources in AIR-Bench are publicly available at https://github.com/AIR-Bench/AIR-Bench.
A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
ZhuJiu: A Multi-dimensional, Multi-faceted Chinese Benchmark for Large Language Models
The unprecedented performance of large language models (LLMs) requires comprehensive and accurate evaluation. We argue that for LLMs evaluation, benchmarks need to be comprehensive and systematic. To this end, we propose the ZhuJiu benchmark, which has the following strengths: (1) Multi-dimensional ability coverage: We comprehensively evaluate LLMs across 7 ability dimensions covering 51 tasks. Especially, we also propose a new benchmark that focuses on knowledge ability of LLMs. (2) Multi-faceted evaluation methods collaboration: We use 3 different yet complementary evaluation methods to comprehensively evaluate LLMs, which can ensure the authority and accuracy of the evaluation results. (3) Comprehensive Chinese benchmark: ZhuJiu is the pioneering benchmark that fully assesses LLMs in Chinese, while also providing equally robust evaluation abilities in English. (4) Avoiding potential data leakage: To avoid data leakage, we construct evaluation data specifically for 37 tasks. We evaluate 10 current mainstream LLMs and conduct an in-depth discussion and analysis of their results. The ZhuJiu benchmark and open-participation leaderboard are publicly released at http://www.zhujiu-benchmark.com/ and we also provide a demo video at https://youtu.be/qypkJ89L1Ic.
VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?
Multimodal Large Language models (MLLMs) have shown promise in web-related tasks, but evaluating their performance in the web domain remains a challenge due to the lack of comprehensive benchmarks. Existing benchmarks are either designed for general multimodal tasks, failing to capture the unique characteristics of web pages, or focus on end-to-end web agent tasks, unable to measure fine-grained abilities such as OCR, understanding, and grounding. In this paper, we introduce , a multimodal benchmark designed to assess the capabilities of MLLMs across a variety of web tasks. consists of seven tasks, and comprises 1.5K human-curated instances from 139 real websites, covering 87 sub-domains. We evaluate 14 open-source MLLMs, Gemini Pro, Claude-3 series, and GPT-4V(ision) on , revealing significant challenges and performance gaps. Further analysis highlights the limitations of current MLLMs, including inadequate grounding in text-rich environments and subpar performance with low-resolution image inputs. We believe will serve as a valuable resource for the research community and contribute to the creation of more powerful and versatile MLLMs for web-related applications.
Are Your LLMs Capable of Stable Reasoning?
The rapid advancement of Large Language Models (LLMs) has demonstrated remarkable progress in complex reasoning tasks. However, a significant discrepancy persists between benchmark performances and real-world applications. We identify this gap as primarily stemming from current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, particularly in complex reasoning tasks where both accuracy and consistency are crucial. This work makes two key contributions. First, we introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance across multiple sampling attempts, quantifying both the model's peak performance potential and its stability. Second, we present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems designed to minimize data leakage risks during evaluation. Through extensive experiments using G-Pass@k on state-of-the-art LLMs with LiveMathBench, we provide comprehensive insights into both their maximum capabilities and operational consistency. Our findings reveal substantial room for improvement in LLMs' "realistic" reasoning capabilities, highlighting the need for more robust evaluation methods. The benchmark and detailed results are available at: https://github.com/open-compass/GPassK.
DependEval: Benchmarking LLMs for Repository Dependency Understanding
While large language models (LLMs) have shown considerable promise in code generation, real-world software development demands advanced repository-level reasoning. This includes understanding dependencies, project structures, and managing multi-file changes. However, the ability of LLMs to effectively comprehend and handle complex code repositories has yet to be fully explored. To address challenges, we introduce a hierarchical benchmark designed to evaluate repository dependency understanding (DependEval). Benchmark is based on 15,576 repositories collected from real-world websites. It evaluates models on three core tasks: Dependency Recognition, Repository Construction, and Multi-file Editing, across 8 programming languages from actual code repositories. Our evaluation of over 25 LLMs reveals substantial performance gaps and provides valuable insights into repository-level code understanding.
AudioBench: A Universal Benchmark for Audio Large Language Models
We introduce AudioBench, a new benchmark designed to evaluate audio large language models (AudioLLMs). AudioBench encompasses 8 distinct tasks and 26 carefully selected or newly curated datasets, focusing on speech understanding, voice interpretation, and audio scene understanding. Despite the rapid advancement of large language models, including multimodal versions, a significant gap exists in comprehensive benchmarks for thoroughly evaluating their capabilities. AudioBench addresses this gap by providing relevant datasets and evaluation metrics. In our study, we evaluated the capabilities of four models across various aspects and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-source code, data, and leaderboard will offer a robust testbed for future model developments.
Taxi1500: A Multilingual Dataset for Text Classification in 1500 Languages
While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code.
Evaluation of OpenAI Codex for HPC Parallel Programming Models Kernel Generation
We evaluate AI-assisted generative capabilities on fundamental numerical kernels in high-performance computing (HPC), including AXPY, GEMV, GEMM, SpMV, Jacobi Stencil, and CG. We test the generated kernel codes for a variety of language-supported programming models, including (1) C++ (e.g., OpenMP [including offload], OpenACC, Kokkos, SyCL, CUDA, and HIP), (2) Fortran (e.g., OpenMP [including offload] and OpenACC), (3) Python (e.g., numba, Numba, cuPy, and pyCUDA), and (4) Julia (e.g., Threads, CUDA.jl, AMDGPU.jl, and KernelAbstractions.jl). We use the GitHub Copilot capabilities powered by OpenAI Codex available in Visual Studio Code as of April 2023 to generate a vast amount of implementations given simple <kernel> + <programming model> + <optional hints> prompt variants. To quantify and compare the results, we propose a proficiency metric around the initial 10 suggestions given for each prompt. Results suggest that the OpenAI Codex outputs for C++ correlate with the adoption and maturity of programming models. For example, OpenMP and CUDA score really high, whereas HIP is still lacking. We found that prompts from either a targeted language such as Fortran or the more general-purpose Python can benefit from adding code keywords, while Julia prompts perform acceptably well for its mature programming models (e.g., Threads and CUDA.jl). We expect for these benchmarks to provide a point of reference for each programming model's community. Overall, understanding the convergence of large language models, AI, and HPC is crucial due to its rapidly evolving nature and how it is redefining human-computer interactions.
LongIns: A Challenging Long-context Instruction-based Exam for LLMs
The long-context capabilities of large language models (LLMs) have been a hot topic in recent years. To evaluate the performance of LLMs in different scenarios, various assessment benchmarks have emerged. However, as most of these benchmarks focus on identifying key information to answer questions, which mainly requires the retrieval ability of LLMs, these benchmarks can partially represent the reasoning performance of LLMs from large amounts of information. Meanwhile, although LLMs often claim to have context windows of 32k, 128k, 200k, or even longer, these benchmarks fail to reveal the actual supported length of these LLMs. To address these issues, we propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs, which is built based on the existing instruction datasets. Specifically, in our LongIns, we introduce three evaluation settings: Global Instruction & Single Task (GIST), Local Instruction & Single Task (LIST), and Local Instruction & Multiple Tasks (LIMT). Based on LongIns, we perform comprehensive evaluations on existing LLMs and have the following important findings: (1). The top-performing GPT-4 with 128k context length performs poorly on the evaluation context window of 16k in our LongIns. (2). For the multi-hop reasoning ability of many existing LLMs, significant efforts are still needed under short context windows (less than 4k).
Proving the Coding Interview: A Benchmark for Formally Verified Code Generation
We introduce the Formally Verified Automated Programming Progress Standards, or FVAPPS, a benchmark of 4715 samples for writing programs and proving their correctness, the largest formal verification benchmark, including 1083 curated and quality controlled samples. Previously, APPS provided a benchmark and dataset for programming puzzles to be completed in Python and checked against unit tests, of the kind seen in technical assessments in the software engineering industry. Building upon recent approaches for benchmarks in interactive theorem proving, we generalize the unit tests to Lean 4 theorems given without proof (i.e., using Lean's "sorry" keyword). On the 406 theorems of 100 randomly selected samples, Sonnet correctly proves 30% and Gemini correctly proves 18%. We challenge the machine learning and program synthesis communities to solve both each general purpose programming problem and its associated correctness specifications. The benchmark is available at https://huggingface.co./datasets/quinn-dougherty/fvapps.
AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs
Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes ~45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We will release the dialectal translation models and benchmarks curated in this study.
CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation
Large Language Models (LLMs) have demonstrated remarkable performance on coding related tasks, particularly on assisting humans in programming and facilitating programming automation. However, existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations. First, most benchmarks are deficient as they focus on a narrow range of popular programming languages and specific tasks, whereas the real-world software development scenarios show dire need to implement systems with multilingual programming environments to satisfy diverse requirements. Practical programming practices also strongly expect multi-task settings for testing coding capabilities of LLMs comprehensively and robustly. Second, most benchmarks also fail to consider the actual executability and the consistency of execution results of the generated code. To bridge these gaps between existing benchmarks and expectations from practical applications, we introduce CodeScope, an execution-based, multilingual, multi-task, multi-dimensional evaluation benchmark for comprehensively gauging LLM capabilities on coding tasks. CodeScope covers 43 programming languages and 8 coding tasks. It evaluates the coding performance of LLMs from three dimensions (perspectives): difficulty, efficiency, and length. To facilitate execution-based evaluations of code generation, we develop MultiCodeEngine, an automated code execution engine that supports 14 programming languages. Finally, we systematically evaluate and analyze 8 mainstream LLMs on CodeScope tasks and demonstrate the superior breadth and challenges of CodeScope for evaluating LLMs on code understanding and generation tasks compared to other benchmarks. The CodeScope benchmark and datasets are publicly available at https://github.com/WeixiangYAN/CodeScope.
AlignBench: Benchmarking Chinese Alignment of Large Language Models
Alignment has become a critical step for instruction-tuned Large Language Models (LLMs) to become helpful assistants. However, effective evaluation of alignment for emerging Chinese LLMs is still significantly lacking, calling for real-scenario grounded, open-ended, challenging and automatic evaluations tailored for alignment. To fill in this gap, we introduce AlignBench, a comprehensive multi-dimensional benchmark for evaluating LLMs' alignment in Chinese. Equipped with a human-in-the-loop data curation pipeline, our benchmark employs a rule-calibrated multi-dimensional LLM-as-Judge with Chain-of-Thought to generate explanations and final ratings as evaluations, ensuring high reliability and interpretability. Furthermore, we report AlignBench evaluated by CritiqueLLM, a dedicated Chinese evaluator LLM that recovers 95% of GPT-4's evaluation ability. We will provide public APIs for evaluating AlignBench with CritiqueLLM to facilitate the evaluation of LLMs' Chinese alignment. All evaluation codes, data, and LLM generations are available at https://github.com/THUDM/AlignBench.
Measuring Coding Challenge Competence With APPS
While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. Despite its importance, there has been surprisingly little work on evaluating code generation, and it can be difficult to accurately assess code generation performance rigorously. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate satisfactory Python code. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially as models improve. Recent models such as GPT-Neo can pass approximately 20% of the test cases of introductory problems, so we find that machine learning models are now beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.
MiniF2F: a cross-system benchmark for formal Olympiad-level mathematics
We present miniF2F, a dataset of formal Olympiad-level mathematics problems statements intended to provide a unified cross-system benchmark for neural theorem proving. The miniF2F benchmark currently targets Metamath, Lean, Isabelle (partially) and HOL Light (partially) and consists of 488 problem statements drawn from the AIME, AMC, and the International Mathematical Olympiad (IMO), as well as material from high-school and undergraduate mathematics courses. We report baseline results using GPT-f, a neural theorem prover based on GPT-3 and provide an analysis of its performance. We intend for miniF2F to be a community-driven effort and hope that our benchmark will help spur advances in neural theorem proving.
NewTerm: Benchmarking Real-Time New Terms for Large Language Models with Annual Updates
Despite their remarkable abilities in various tasks, large language models (LLMs) still struggle with real-time information (e.g., new facts and terms) due to the knowledge cutoff in their development process. However, existing benchmarks focus on outdated content and limited fields, facing difficulties in real-time updating and leaving new terms unexplored. To address this problem, we propose an adaptive benchmark, NewTerm, for real-time evaluation of new terms. We design a highly automated construction method to ensure high-quality benchmark construction with minimal human effort, allowing flexible updates for real-time information. Empirical results on various LLMs demonstrate over 20% performance reduction caused by new terms. Additionally, while updates to the knowledge cutoff of LLMs can cover some of the new terms, they are unable to generalize to more distant new terms. We also analyze which types of terms are more challenging and why LLMs struggle with new terms, paving the way for future research. Finally, we construct NewTerm 2022 and 2023 to evaluate the new terms updated each year and will continue updating annually. The benchmark and codes can be found at https://github.com/hexuandeng/NewTerm.
HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing
We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/.
A Comprehensive Evaluation of Quantized Instruction-Tuned Large Language Models: An Experimental Analysis up to 405B
Prior research works have evaluated quantized LLMs using limited metrics such as perplexity or a few basic knowledge tasks and old datasets. Additionally, recent large-scale models such as Llama 3.1 with up to 405B have not been thoroughly examined. This paper evaluates the performance of instruction-tuned LLMs across various quantization methods (GPTQ, AWQ, SmoothQuant, and FP8) on models ranging from 7B to 405B. Using 13 benchmarks, we assess performance across six task types: commonsense Q\&A, knowledge and language understanding, instruction following, hallucination detection, mathematics, and dialogue. Our key findings reveal that (1) quantizing a larger LLM to a similar size as a smaller FP16 LLM generally performs better across most benchmarks, except for hallucination detection and instruction following; (2) performance varies significantly with different quantization methods, model size, and bit-width, with weight-only methods often yielding better results in larger models; (3) task difficulty does not significantly impact accuracy degradation due to quantization; and (4) the MT-Bench evaluation method has limited discriminatory power among recent high-performing LLMs.
Benchmarking and Learning Multi-Dimensional Quality Evaluator for Text-to-3D Generation
Text-to-3D generation has achieved remarkable progress in recent years, yet evaluating these methods remains challenging for two reasons: i) Existing benchmarks lack fine-grained evaluation on different prompt categories and evaluation dimensions. ii) Previous evaluation metrics only focus on a single aspect (e.g., text-3D alignment) and fail to perform multi-dimensional quality assessment. To address these problems, we first propose a comprehensive benchmark named MATE-3D. The benchmark contains eight well-designed prompt categories that cover single and multiple object generation, resulting in 1,280 generated textured meshes. We have conducted a large-scale subjective experiment from four different evaluation dimensions and collected 107,520 annotations, followed by detailed analyses of the results. Based on MATE-3D, we propose a novel quality evaluator named HyperScore. Utilizing hypernetwork to generate specified mapping functions for each evaluation dimension, our metric can effectively perform multi-dimensional quality assessment. HyperScore presents superior performance over existing metrics on MATE-3D, making it a promising metric for assessing and improving text-to-3D generation. The project is available at https://mate-3d.github.io/.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning
Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.
Process-Driven Autoformalization in Lean 4
Autoformalization, the conversion of natural language mathematics into formal languages, offers significant potential for advancing mathematical reasoning. However, existing efforts are limited to formal languages with substantial online corpora and struggle to keep pace with rapidly evolving languages like Lean 4. To bridge this gap, we propose a new benchmark Formalization for Lean~4 (\name) designed to evaluate the autoformalization capabilities of large language models (LLMs). This benchmark encompasses a comprehensive assessment of questions, answers, formal statements, and proofs. Additionally, we introduce a Process-Supervised Verifier (PSV) model that leverages the precise feedback from Lean 4 compilers to enhance autoformalization. Our experiments demonstrate that the PSV method improves autoformalization, enabling higher accuracy using less filtered training data. Furthermore, when fine-tuned with data containing detailed process information, PSV can leverage the data more effectively, leading to more significant improvements in autoformalization for Lean 4. Our dataset and code are available at https://github.com/rookie-joe/PDA.
ForecastBench: A Dynamic Benchmark of AI Forecasting Capabilities
Forecasts of future events are essential inputs into informed decision-making. Machine learning (ML) systems have the potential to deliver forecasts at scale, but there is no framework for evaluating the accuracy of ML systems on a standardized set of forecasting questions. To address this gap, we introduce ForecastBench: a dynamic benchmark that evaluates the accuracy of ML systems on an automatically generated and regularly updated set of 1,000 forecasting questions. To avoid any possibility of data leakage, ForecastBench is comprised solely of questions about future events that have no known answer at the time of submission. We quantify the capabilities of current ML systems by collecting forecasts from expert (human) forecasters, the general public, and LLMs on a random subset of questions from the benchmark (N=200). While LLMs have achieved super-human performance on many benchmarks, they perform less well here: expert forecasters outperform the top-performing LLM (p-value <0.001). We display system and human scores in a public leaderboard at www.forecastbench.org.
Do Large Language Model Benchmarks Test Reliability?
When deploying large language models (LLMs), it is important to ensure that these models are not only capable, but also reliable. Many benchmarks have been created to track LLMs' growing capabilities, however there has been no similar focus on measuring their reliability. To understand the potential ramifications of this gap, we investigate how well current benchmarks quantify model reliability. We find that pervasive label errors can compromise these evaluations, obscuring lingering model failures and hiding unreliable behavior. Motivated by this gap in the evaluation of reliability, we then propose the concept of so-called platinum benchmarks, i.e., benchmarks carefully curated to minimize label errors and ambiguity. As a first attempt at constructing such benchmarks, we revise examples from fifteen existing popular benchmarks. We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks such as elementary-level math word problems. Analyzing these failures further reveals previously unidentified patterns of problems on which frontier models consistently struggle. We provide code at https://github.com/MadryLab/platinum-benchmarks
XTREME-S: Evaluating Cross-lingual Speech Representations
We introduce XTREME-S, a new benchmark to evaluate universal cross-lingual speech representations in many languages. XTREME-S covers four task families: speech recognition, classification, speech-to-text translation and retrieval. Covering 102 languages from 10+ language families, 3 different domains and 4 task families, XTREME-S aims to simplify multilingual speech representation evaluation, as well as catalyze research in "universal" speech representation learning. This paper describes the new benchmark and establishes the first speech-only and speech-text baselines using XLS-R and mSLAM on all downstream tasks. We motivate the design choices and detail how to use the benchmark. Datasets and fine-tuning scripts are made easily accessible at https://hf.co/datasets/google/xtreme_s.
State of What Art? A Call for Multi-Prompt LLM Evaluation
Recent advances in large language models (LLMs) have led to the development of various evaluation benchmarks. These benchmarks typically rely on a single instruction template for evaluating all LLMs on a specific task. In this paper, we comprehensively analyze the brittleness of results obtained via single-prompt evaluations across 6.5M instances, involving 20 different LLMs and 39 tasks from 3 benchmarks. To improve robustness of the analysis, we propose to evaluate LLMs with a set of diverse prompts instead. We discuss tailored evaluation metrics for specific use cases (e.g., LLM developers vs. developers interested in a specific downstream task), ensuring a more reliable and meaningful assessment of LLM capabilities. We then implement these criteria and conduct evaluations of multiple models, providing insights into the true strengths and limitations of current LLMs.
Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts
Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, "Conceptual Coverage Across Languages" (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction's impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions.
HEALTH-PARIKSHA: Assessing RAG Models for Health Chatbots in Real-World Multilingual Settings
Assessing the capabilities and limitations of large language models (LLMs) has garnered significant interest, yet the evaluation of multiple models in real-world scenarios remains rare. Multilingual evaluation often relies on translated benchmarks, which typically do not capture linguistic and cultural nuances present in the source language. This study provides an extensive assessment of 24 LLMs on real world data collected from Indian patients interacting with a medical chatbot in Indian English and 4 other Indic languages. We employ a uniform Retrieval Augmented Generation framework to generate responses, which are evaluated using both automated techniques and human evaluators on four specific metrics relevant to our application. We find that models vary significantly in their performance and that instruction tuned Indic models do not always perform well on Indic language queries. Further, we empirically show that factual correctness is generally lower for responses to Indic queries compared to English queries. Finally, our qualitative work shows that code-mixed and culturally relevant queries in our dataset pose challenges to evaluated models.
RAFT: A Real-World Few-Shot Text Classification Benchmark
Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? Existing benchmarks are not designed to measure progress in applied settings, and so don't directly answer this question. The RAFT benchmark (Real-world Annotated Few-shot Tasks) focuses on naturally occurring tasks and uses an evaluation setup that mirrors deployment. Baseline evaluations on RAFT reveal areas current techniques struggle with: reasoning over long texts and tasks with many classes. Human baselines show that some classification tasks are difficult for non-expert humans, reflecting that real-world value sometimes depends on domain expertise. Yet even non-expert human baseline F1 scores exceed GPT-3 by an average of 0.11. The RAFT datasets and leaderboard will track which model improvements translate into real-world benefits at https://raft.elicit.org .
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.
Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models
New LLM evaluation benchmarks are important to align with the rapid development of Large Language Models (LLMs). In this work, we present Chinese SimpleQA, the first comprehensive Chinese benchmark to evaluate the factuality ability of language models to answer short questions, and Chinese SimpleQA mainly has five properties (i.e., Chinese, Diverse, High-quality, Static, Easy-to-evaluate). Specifically, first, we focus on the Chinese language over 6 major topics with 99 diverse subtopics. Second, we conduct a comprehensive quality control process to achieve high-quality questions and answers, where the reference answers are static and cannot be changed over time. Third, following SimpleQA, the questions and answers are very short, and the grading process is easy-to-evaluate based on OpenAI API. Based on Chinese SimpleQA, we perform a comprehensive evaluation on the factuality abilities of existing LLMs. Finally, we hope that Chinese SimpleQA could guide the developers to better understand the Chinese factuality abilities of their models and facilitate the growth of foundation models.
FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering
Table Question Answering (TQA) aims at composing an answer to a question based on tabular data. While prior research has shown that TQA models lack robustness, understanding the underlying cause and nature of this issue remains predominantly unclear, posing a significant obstacle to the development of robust TQA systems. In this paper, we formalize three major desiderata for a fine-grained evaluation of robustness of TQA systems. They should (i) answer questions regardless of alterations in table structure, (ii) base their responses on the content of relevant cells rather than on biases, and (iii) demonstrate robust numerical reasoning capabilities. To investigate these aspects, we create and publish a novel TQA evaluation benchmark in English. Our extensive experimental analysis reveals that none of the examined state-of-the-art TQA systems consistently excels in these three aspects. Our benchmark is a crucial instrument for monitoring the behavior of TQA systems and paves the way for the development of robust TQA systems. We release our benchmark publicly.
Beyond Correctness: Benchmarking Multi-dimensional Code Generation for Large Language Models
In recent years, researchers have proposed numerous benchmarks to evaluate the impressive coding capabilities of large language models (LLMs). However, existing benchmarks primarily focus on assessing the correctness of code generated by LLMs, while neglecting other critical dimensions that also significantly impact code quality. Therefore, this paper proposes the RACE benchmark, which comprehensively evaluates the quality of code generated by LLMs across 4 dimensions: Readability, mAintainability, Correctness, and Efficiency. Specifically, considering the demand-dependent nature of dimensions beyond correctness, we design various types of user requirements for each dimension to assess the model's ability to generate correct code that also meets user demands. We evaluate 18 representative LLMs on RACE and find that: 1) the current LLMs' ability to generate high-quality code on demand does not yet meet the requirements of software development; 2) readability serves as a critical indicator of the overall quality of generated code; 3) most LLMs exhibit an inherent preference for specific coding style. These findings can help researchers gain a deeper understanding of the coding capabilities of current LLMs and shed light on future directions for model improvement.
BARS-CTR: Open Benchmarking for Click-Through Rate Prediction
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we aim to perform open benchmarking for CTR prediction and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
FaMTEB: Massive Text Embedding Benchmark in Persian Language
In this paper, we introduce a comprehensive benchmark for Persian (Farsi) text embeddings, built upon the Massive Text Embedding Benchmark (MTEB). Our benchmark includes 63 datasets spanning seven different tasks: classification, clustering, pair classification, reranking, retrieval, summary retrieval, and semantic textual similarity. The datasets are formed as a combination of existing, translated, and newly generated data, offering a diverse evaluation framework for Persian language models. Given the increasing use of text embedding models in chatbots, evaluation datasets are becoming inseparable ingredients in chatbot challenges and Retrieval-Augmented Generation systems. As a contribution, we include chatbot evaluation datasets in the MTEB benchmark for the first time. In addition, in this paper, we introduce the new task of summary retrieval which is not part of the tasks included in standard MTEB. Another contribution of this paper is the introduction of a substantial number of new Persian language NLP datasets suitable for training and evaluation, some of which have no previous counterparts in Persian. We evaluate the performance of several Persian and multilingual embedding models in a range of tasks. This work introduces an open-source benchmark with datasets, code and a public leaderboard.
Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages
Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT.
UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions
The rapid development of large language models (LLMs) has shown promising practical results. However, their low interpretability often leads to errors in unforeseen circumstances, limiting their utility. Many works have focused on creating comprehensive evaluation systems, but previous benchmarks have primarily assessed problem-solving abilities while neglecting the response's uncertainty, which may result in unreliability. Recent methods for measuring LLM reliability are resource-intensive and unable to test black-box models. To address this, we propose UBENCH, a comprehensive benchmark for evaluating LLM reliability. UBENCH includes 3,978 multiple-choice questions covering knowledge, language, understanding, and reasoning abilities. Experimental results show that UBENCH has achieved state-of-the-art performance, while its single-sampling method significantly saves computational resources compared to baseline methods that require multiple samplings. Additionally, based on UBENCH, we evaluate the reliability of 15 popular LLMs, finding GLM4 to be the most outstanding, closely followed by GPT-4. We also explore the impact of Chain-of-Thought prompts, role-playing prompts, option order, and temperature on LLM reliability, analyzing the varying effects on different LLMs.
MedExpQA: Multilingual Benchmarking of Large Language Models for Medical Question Answering
Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence technology to assist medical experts for interactive decision support, which has been demonstrated by their competitive performances in Medical QA. However, while impressive, the required quality bar for medical applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages other than English which remains, as far as we know, a totally neglected topic. In order to address these shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for the first time reference gold explanations written by medical doctors which can be leveraged to establish various gold-based upper-bounds for comparison with LLMs performance. Comprehensive multilingual experimentation using both the gold reference explanations and Retrieval Augmented Generation (RAG) approaches show that performance of LLMs still has large room for improvement, especially for languages other than English. Furthermore, and despite using state-of-the-art RAG methods, our results also demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively impact results on downstream evaluations for Medical Question Answering. So far the benchmark is available in four languages, but we hope that this work may encourage further development to other languages.
StreamBench: Towards Benchmarking Continuous Improvement of Language Agents
Recent works have shown that large language model (LLM) agents are able to improve themselves from experience, which is an important ability for continuous enhancement post-deployment. However, existing benchmarks primarily evaluate their innate capabilities and do not assess their ability to improve over time. To address this gap, we introduce StreamBench, a pioneering benchmark designed to evaluate the continuous improvement of LLM agents over an input-feedback sequence. StreamBench simulates an online learning environment where LLMs receive a continuous flow of feedback stream and iteratively enhance their performance. In addition, we propose several simple yet effective baselines for improving LLMs on StreamBench, and provide a comprehensive analysis to identify critical components that contribute to successful streaming strategies. Our work serves as a stepping stone towards developing effective online learning strategies for LLMs, paving the way for more adaptive AI systems in streaming scenarios.
KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
MERA: A Comprehensive LLM Evaluation in Russian
Over the past few years, one of the most notable advancements in AI research has been in foundation models (FMs), headlined by the rise of language models (LMs). As the models' size increases, LMs demonstrate enhancements in measurable aspects and the development of new qualitative features. However, despite researchers' attention and the rapid growth in LM application, the capabilities, limitations, and associated risks still need to be better understood. To address these issues, we introduce an open Multimodal Evaluation of Russian-language Architectures (MERA), a new instruction benchmark for evaluating foundation models oriented towards the Russian language. The benchmark encompasses 21 evaluation tasks for generative models in 11 skill domains and is designed as a black-box test to ensure the exclusion of data leakage. The paper introduces a methodology to evaluate FMs and LMs in zero- and few-shot fixed instruction settings that can be extended to other modalities. We propose an evaluation methodology, an open-source code base for the MERA assessment, and a leaderboard with a submission system. We evaluate open LMs as baselines and find that they are still far behind the human level. We publicly release MERA to guide forthcoming research, anticipate groundbreaking model features, standardize the evaluation procedure, and address potential societal drawbacks.
WiCkeD: A Simple Method to Make Multiple Choice Benchmarks More Challenging
We introduce WiCkeD, a simple method to increase the complexity of existing multiple-choice benchmarks by randomly replacing a choice with "None of the above", a method often used in educational tests. We show that WiCkeD can be automatically applied to any existing benchmark, making it more challenging. We apply WiCkeD to 6 popular benchmarks and use it to evaluate 18 open-weight LLMs. The performance of the models drops 12.1 points on average with respect to the original versions of the datasets. When using chain-of-thought on 3 MMLU datasets, the performance drop for the WiCkeD variant is similar to the one observed when using the LLMs directly, showing that WiCkeD is also challenging for models with enhanced reasoning abilities. WiCkeD also uncovers that some models are more sensitive to the extra reasoning required, providing additional information with respect to the original benchmarks. We relase our code and data at https://github.com/ahmedselhady/wicked-benchmarks.
The Effect of Domain and Diacritics in Yorùbá-English Neural Machine Translation
Massively multilingual machine translation (MT) has shown impressive capabilities, including zero and few-shot translation between low-resource language pairs. However, these models are often evaluated on high-resource languages with the assumption that they generalize to low-resource ones. The difficulty of evaluating MT models on low-resource pairs is often due to lack of standardized evaluation datasets. In this paper, we present MENYO-20k, the first multi-domain parallel corpus with a special focus on clean orthography for Yor\`ub\'a--English with standardized train-test splits for benchmarking. We provide several neural MT benchmarks and compare them to the performance of popular pre-trained (massively multilingual) MT models both for the heterogeneous test set and its subdomains. Since these pre-trained models use huge amounts of data with uncertain quality, we also analyze the effect of diacritics, a major characteristic of Yor\`ub\'a, in the training data. We investigate how and when this training condition affects the final quality and intelligibility of a translation. Our models outperform massively multilingual models such as Google (+8.7 BLEU) and Facebook M2M (+9.1 BLEU) when translating to Yor\`ub\'a, setting a high quality benchmark for future research.
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
MdEval: Massively Multilingual Code Debugging
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking
The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.
Understand, Solve and Translate: Bridging the Multilingual Mathematical Reasoning Gap
Large language models (LLMs) demonstrate exceptional performance on complex reasoning tasks. However, despite their strong reasoning capabilities in high-resource languages (e.g., English and Chinese), a significant performance gap persists in other languages. To investigate this gap in Korean, we introduce HRM8K, a benchmark comprising 8,011 English-Korean parallel bilingual math problems. Through systematic analysis of model behaviors, we identify a key finding: these performance disparities stem primarily from difficulties in comprehending non-English inputs, rather than limitations in reasoning capabilities. Based on these findings, we propose UST (Understand, Solve, and Translate), a method that strategically uses English as an anchor for reasoning and solution generation. By fine-tuning the model on 130k synthetically generated data points, UST achieves a 10.91% improvement on the HRM8K benchmark and reduces the multilingual performance gap from 11.6% to 0.7%. Additionally, we show that improvements from UST generalize effectively to different Korean domains, demonstrating that capabilities acquired from machine-verifiable content can be generalized to other areas. We publicly release the benchmark, training dataset, and models.
Knesset-DictaBERT: A Hebrew Language Model for Parliamentary Proceedings
We present Knesset-DictaBERT, a large Hebrew language model fine-tuned on the Knesset Corpus, which comprises Israeli parliamentary proceedings. The model is based on the DictaBERT architecture and demonstrates significant improvements in understanding parliamentary language according to the MLM task. We provide a detailed evaluation of the model's performance, showing improvements in perplexity and accuracy over the baseline DictaBERT model.
AraTrust: An Evaluation of Trustworthiness for LLMs in Arabic
The swift progress and widespread acceptance of artificial intelligence (AI) systems highlight a pressing requirement to comprehend both the capabilities and potential risks associated with AI. Given the linguistic complexity, cultural richness, and underrepresented status of Arabic in AI research, there is a pressing need to focus on Large Language Models (LLMs) performance and safety for Arabic-related tasks. Despite some progress in their development, there is a lack of comprehensive trustworthiness evaluation benchmarks, which presents a major challenge in accurately assessing and improving the safety of LLMs when prompted in Arabic. In this paper, we introduce AraTrust, the first comprehensive trustworthiness benchmark for LLMs in Arabic. AraTrust comprises 522 human-written multiple-choice questions addressing diverse dimensions related to truthfulness, ethics, safety, physical health, mental health, unfairness, illegal activities, privacy, and offensive language. We evaluated a set of LLMs against our benchmark to assess their trustworthiness. GPT-4 was the most trustworthy LLM, while open-source models, particularly AceGPT 7B and Jais 13B, struggled to achieve a score of 60% in our benchmark.
CUDRT: Benchmarking the Detection of Human vs. Large Language Models Generated Texts
The proliferation of large language models (LLMs) has significantly enhanced text generation capabilities across various industries. However, these models' ability to generate human-like text poses substantial challenges in discerning between human and AI authorship. Despite the effectiveness of existing AI-generated text detectors, their development is hindered by the lack of comprehensive, publicly available benchmarks. Current benchmarks are limited to specific scenarios, such as question answering and text polishing, and predominantly focus on English texts, failing to capture the diverse applications and linguistic nuances of LLMs. To address these limitations, this paper constructs a comprehensive bilingual benchmark in both Chinese and English to evaluate mainstream AI-generated text detectors. We categorize LLM text generation into five distinct operations: Create, Update, Delete, Rewrite, and Translate (CUDRT), encompassing all current LLMs activities. We also establish a robust benchmark evaluation framework to support scalable and reproducible experiments. For each CUDRT category, we have developed extensive datasets to thoroughly assess detector performance. By employing the latest mainstream LLMs specific to each language, our datasets provide a thorough evaluation environment. Extensive experimental results offer critical insights for optimizing AI-generated text detectors and suggest future research directions to improve detection accuracy and generalizability across various scenarios.
Aligning benchmark datasets for table structure recognition
Benchmark datasets for table structure recognition (TSR) must be carefully processed to ensure they are annotated consistently. However, even if a dataset's annotations are self-consistent, there may be significant inconsistency across datasets, which can harm the performance of models trained and evaluated on them. In this work, we show that aligning these benchmarksx2014removing both errors and inconsistency between themx2014improves model performance significantly. We demonstrate this through a data-centric approach where we adopt a single model architecture, the Table Transformer (TATR), that we hold fixed throughout. Baseline exact match accuracy for TATR evaluated on the ICDAR-2013 benchmark is 65% when trained on PubTables-1M, 42% when trained on FinTabNet, and 69% combined. After reducing annotation mistakes and inter-dataset inconsistency, performance of TATR evaluated on ICDAR-2013 increases substantially to 75% when trained on PubTables-1M, 65% when trained on FinTabNet, and 81% combined. We show through ablations over the modification steps that canonicalization of the table annotations has a significantly positive effect on performance, while other choices balance necessary trade-offs that arise when deciding a benchmark dataset's final composition. Overall we believe our work has significant implications for benchmark design for TSR and potentially other tasks as well. All dataset processing and training code will be released.
LLaMA Beyond English: An Empirical Study on Language Capability Transfer
In recent times, substantial advancements have been witnessed in large language models (LLMs), exemplified by ChatGPT, showcasing remarkable proficiency across a range of complex tasks. However, many mainstream LLMs (e.g. LLaMA) are pretrained on English-dominant corpus, which limits their performance in other non-English languages. In this paper, we focus on how to effectively transfer the capabilities of language generation and following instructions to a non-English language. To answer this question, we conduct an extensive empirical investigation based on LLaMA, accumulating over 1440 GPU hours. We analyze the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer. To accurately assess the model's level of knowledge, we employ four widely used standardized testing benchmarks: C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench. Furthermore, a comprehensive evaluation of the model's response quality is conducted, considering aspects such as accuracy, fluency, informativeness, logical coherence, and harmlessness, based on LLM-Eval, a benchmarks consisting instruction tasks from 17 diverse categories. Our evaluation results demonstrate that comparable performance to state-of-the-art transfer models can be achieved with less than 1% of the pretraining data, both in terms of knowledge alignment and response quality. Furthermore, the experimental outcomes across the thirteen low-resource languages also exhibit similar trends. We anticipate that the conclusions revealed by the experiments will aid the community in developing non-English LLMs.
ToolBeHonest: A Multi-level Hallucination Diagnostic Benchmark for Tool-Augmented Large Language Models
Tool-augmented large language models (LLMs) are rapidly being integrated into real-world applications. Due to the lack of benchmarks, the community still needs to fully understand the hallucination issues within these models. To address this challenge, we introduce a comprehensive diagnostic benchmark, ToolBH. Specifically, we assess the LLM's hallucinations through two perspectives: depth and breadth. In terms of depth, we propose a multi-level diagnostic process, including (1) solvability detection, (2) solution planning, and (3) missing-tool analysis. For breadth, we consider three scenarios based on the characteristics of the toolset: missing necessary tools, potential tools, and limited functionality tools. Furthermore, we developed seven tasks and collected 700 evaluation samples through multiple rounds of manual annotation. The results show the significant challenges presented by the ToolBH benchmark. The current advanced models Gemini-1.5-Pro and GPT-4o only achieve a total score of 45.3 and 37.0, respectively, on a scale of 100. In this benchmark, larger model parameters do not guarantee better performance; the training data and response strategies also play a crucial role in tool-enhanced LLM scenarios. Our diagnostic analysis indicates that the primary reason for model errors lies in assessing task solvability. Additionally, open-weight models suffer from performance drops with verbose replies, whereas proprietary models excel with longer reasoning.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.
PIRB: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods
We present Polish Information Retrieval Benchmark (PIRB), a comprehensive evaluation framework encompassing 41 text information retrieval tasks for Polish. The benchmark incorporates existing datasets as well as 10 new, previously unpublished datasets covering diverse topics such as medicine, law, business, physics, and linguistics. We conduct an extensive evaluation of over 20 dense and sparse retrieval models, including the baseline models trained by us as well as other available Polish and multilingual methods. Finally, we introduce a three-step process for training highly effective language-specific retrievers, consisting of knowledge distillation, supervised fine-tuning, and building sparse-dense hybrid retrievers using a lightweight rescoring model. In order to validate our approach, we train new text encoders for Polish and compare their results with previously evaluated methods. Our dense models outperform the best solutions available to date, and the use of hybrid methods further improves their performance.
Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models
As large language models become increasingly prevalent in the financial sector, there is a pressing need for a standardized method to comprehensively assess their performance. However, existing finance benchmarks often suffer from limited language and task coverage, as well as challenges such as low-quality datasets and inadequate adaptability for LLM evaluation. To address these limitations, we propose "Golden Touchstone", the first comprehensive bilingual benchmark for financial LLMs, which incorporates representative datasets from both Chinese and English across eight core financial NLP tasks. Developed from extensive open source data collection and industry-specific demands, this benchmark includes a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities. Through comparative analysis of major models on the benchmark, such as GPT-4o Llama3, FinGPT and FinMA, we reveal their strengths and limitations in processing complex financial information. Additionally, we open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning, which demonstrates strong performance on the bilingual benchmark but still has limitations in specific tasks.This research not only provides the financial large language models with a practical evaluation tool but also guides the development and optimization of future research. The source code for Golden Touchstone and model weight of Touchstone-GPT have been made publicly available at https://github.com/IDEA-FinAI/Golden-Touchstone, contributing to the ongoing evolution of FinLLMs and fostering further research in this critical area.
M4GT-Bench: Evaluation Benchmark for Black-Box Machine-Generated Text Detection
The advent of Large Language Models (LLMs) has brought an unprecedented surge in machine-generated text (MGT) across diverse channels. This raises legitimate concerns about its potential misuse and societal implications. The need to identify and differentiate such content from genuine human-generated text is critical in combating disinformation, preserving the integrity of education and scientific fields, and maintaining trust in communication. In this work, we address this problem by introducing a new benchmark based on a multilingual, multi-domain, and multi-generator corpus of MGTs -- M4GT-Bench. The benchmark is compiled of three tasks: (1) mono-lingual and multi-lingual binary MGT detection; (2) multi-way detection where one need to identify, which particular model generated the text; and (3) mixed human-machine text detection, where a word boundary delimiting MGT from human-written content should be determined. On the developed benchmark, we have tested several MGT detection baselines and also conducted an evaluation of human performance. We see that obtaining good performance in MGT detection usually requires an access to the training data from the same domain and generators. The benchmark is available at https://github.com/mbzuai-nlp/M4GT-Bench.
COFFE: A Code Efficiency Benchmark for Code Generation
Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.
CoMix: A Comprehensive Benchmark for Multi-Task Comic Understanding
The comic domain is rapidly advancing with the development of single-page analysis and synthesis models. However, evaluation metrics and datasets lag behind, often limited to small-scale or single-style test sets. We introduce a novel benchmark, CoMix, designed to evaluate the multi-task capabilities of models in comic analysis. Unlike existing benchmarks that focus on isolated tasks such as object detection or text recognition, CoMix addresses a broader range of tasks including object detection, speaker identification, character re-identification, reading order, and multi-modal reasoning tasks like character naming and dialogue generation. Our benchmark comprises three existing datasets with expanded annotations to support multi-task evaluation. To mitigate the over-representation of manga-style data, we have incorporated a new dataset of carefully selected American comic-style books, thereby enriching the diversity of comic styles. CoMix is designed to assess pre-trained models in zero-shot and limited fine-tuning settings, probing their transfer capabilities across different comic styles and tasks. The validation split of the benchmark is publicly available for research purposes, and an evaluation server for the held-out test split is also provided. Comparative results between human performance and state-of-the-art models reveal a significant performance gap, highlighting substantial opportunities for advancements in comic understanding. The dataset, baseline models, and code are accessible at the repository link. This initiative sets a new standard for comprehensive comic analysis, providing the community with a common benchmark for evaluation on a large and varied set.
IndicMMLU-Pro: Benchmarking Indic Large Language Models on Multi-Task Language Understanding
Known by more than 1.5 billion people in the Indian subcontinent, Indic languages present unique challenges and opportunities for natural language processing (NLP) research due to their rich cultural heritage, linguistic diversity, and complex structures. IndicMMLU-Pro is a comprehensive benchmark designed to evaluate Large Language Models (LLMs) across Indic languages, building upon the MMLU Pro (Massive Multitask Language Understanding) framework. Covering major languages such as Hindi, Bengali, Gujarati, Marathi, Kannada, Punjabi, Tamil, Telugu, and Urdu, our benchmark addresses the unique challenges and opportunities presented by the linguistic diversity of the Indian subcontinent. This benchmark encompasses a wide range of tasks in language comprehension, reasoning, and generation, meticulously crafted to capture the intricacies of Indian languages. IndicMMLU-Pro provides a standardized evaluation framework to push the research boundaries in Indic language AI, facilitating the development of more accurate, efficient, and culturally sensitive models. This paper outlines the benchmarks' design principles, task taxonomy, and data collection methodology, and presents baseline results from state-of-the-art multilingual models.