2 Fineweb-Edu-Ar: Machine-translated Corpus to Support Arabic Small Language Models As large language models (LLMs) grow and develop, so do their data demands. This is especially true for multilingual LLMs, where the scarcity of high-quality and readily available data online has led to a multitude of synthetic dataset generation approaches. A key technique in this space is machine translation (MT), where high-quality English text is adapted to a target, comparatively low-resource language. This report introduces FineWeb-Edu-Ar, a machine-translated version of the exceedingly popular (deduplicated) FineWeb-Edu dataset from HuggingFace. To the best of our knowledge, FineWeb-Edu-Ar is the largest publicly available machine-translated Arabic dataset out there, with its size of 202B tokens of an Arabic-trained tokenizer. 3 authors · Nov 10, 2024 1
93 The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments. 8 authors · Jun 25, 2024 5
8 OpenCSG Chinese Corpus: A Series of High-quality Chinese Datasets for LLM Training Large language models (LLMs) have demonstrated remarkable capabilities, but their success heavily relies on the quality of pretraining corpora. For Chinese LLMs, the scarcity of high-quality Chinese datasets presents a significant challenge, often limiting their performance. To address this issue, we propose the OpenCSG Chinese Corpus, a series of high-quality datasets specifically designed for LLM pretraining, post-training, and fine-tuning. This corpus includes Fineweb-edu-chinese, Fineweb-edu-chinese-v2, Cosmopedia-chinese, and Smoltalk-chinese, each with distinct characteristics: Fineweb-edu datasets focus on filtered, high-quality content derived from diverse Chinese web sources; Cosmopedia-chinese provides synthetic, textbook-style data for knowledge-intensive training; and Smoltalk-chinese emphasizes stylistic and diverse chat-format data. The OpenCSG Chinese Corpus is characterized by its high-quality text, diverse coverage across domains, and scalable, reproducible data curation processes. Additionally, we conducted extensive experimental analyses, including evaluations on smaller parameter models, which demonstrated significant performance improvements in tasks such as C-Eval, showcasing the effectiveness of the corpus for training Chinese LLMs. 6 authors · Jan 14 2
1 Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM. 7 authors · Oct 31, 2024
1 Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html 9 authors · Dec 3, 2024
53 Predictive Data Selection: The Data That Predicts Is the Data That Teaches Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmark (Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning. To leverage this insight, we introduce data selection based on data's Predictive strength (Preselect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpasses the performance of a vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect. 8 authors · Mar 2 2
- FineWeb-zhtw: Scalable Curation of Traditional Chinese Text Data from the Web The quality and size of a pretraining dataset significantly influence the performance of large language models (LLMs). While there have been numerous efforts in the curation of such a dataset for English users, there is a relative lack of similar initiatives for Traditional Chinese. Building upon this foundation of FineWeb, we introduce FineWeb-zhtw, a dataset tailored specifically for Traditional Chinese users. We came up with multiple stages of meticulously designed filters to cater to the linguistic difference between English and Traditional Chinese, to ensure comprehensiveness and quality. We determined effectiveness from querying dataset samples with three main objectives. Our code and datasets are publicly available. 9 authors · Nov 25, 2024
- FinEval: A Chinese Financial Domain Knowledge Evaluation Benchmark for Large Language Models Large language models (LLMs) have demonstrated exceptional performance in various natural language processing tasks, yet their efficacy in more challenging and domain-specific tasks remains largely unexplored. This paper presents FinEval, a benchmark specifically designed for the financial domain knowledge in the LLMs. FinEval is a collection of high-quality multiple-choice questions covering Finance, Economy, Accounting, and Certificate. It includes 4,661 questions spanning 34 different academic subjects. To ensure a comprehensive model performance evaluation, FinEval employs a range of prompt types, including zero-shot and few-shot prompts, as well as answer-only and chain-of-thought prompts. Evaluating state-of-the-art Chinese and English LLMs on FinEval, the results show that only GPT-4 achieved an accuracy close to 70% in different prompt settings, indicating significant growth potential for LLMs in the financial domain knowledge. Our work offers a more comprehensive financial knowledge evaluation benchmark, utilizing data of mock exams and covering a wide range of evaluated LLMs. 14 authors · Aug 19, 2023
5 GenQA: Generating Millions of Instructions from a Handful of Prompts Most public instruction finetuning datasets are relatively small compared to the closed source datasets used to train industry models. To study questions about finetuning at scale, such as curricula and learning rate cooldown schedules, there is a need for industrial-scale datasets. However, this scale necessitates a data generation process that is almost entirely automated. In this work, we study methods for generating large instruction datasets from a single prompt. With little human oversight, we get LLMs to write diverse sets of instruction examples ranging from simple completion tasks to complex multi-turn dialogs across a variety of subject areas. When finetuning a Llama-3 8B base model, our dataset meets or exceeds both WizardLM and Ultrachat on both knowledge-intensive leaderboard tasks as well as conversational evaluations. We release our dataset, the "generator" prompts that created it, and our finetuned model checkpoints. 7 authors · Jun 14, 2024
7 Scaling Instruction-Finetuned Language Models Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models. 35 authors · Oct 20, 2022 1
39 WebLINX: Real-World Website Navigation with Multi-Turn Dialogue We propose the problem of conversational web navigation, where a digital agent controls a web browser and follows user instructions to solve real-world tasks in a multi-turn dialogue fashion. To support this problem, we introduce WEBLINX - a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. Our benchmark covers a broad range of patterns on over 150 real-world websites and can be used to train and evaluate agents in diverse scenarios. Due to the magnitude of information present, Large Language Models (LLMs) cannot process entire web pages in real-time. To solve this bottleneck, we design a retrieval-inspired model that efficiently prunes HTML pages by ranking relevant elements. We use the selected elements, along with screenshots and action history, to assess a variety of models for their ability to replicate human behavior when navigating the web. Our experiments span from small text-only to proprietary multimodal LLMs. We find that smaller finetuned decoders surpass the best zero-shot LLMs (including GPT-4V), but also larger finetuned multimodal models which were explicitly pretrained on screenshots. However, all finetuned models struggle to generalize to unseen websites. Our findings highlight the need for large multimodal models that can generalize to novel settings. Our code, data and models are available for research: https://mcgill-nlp.github.io/weblinx 3 authors · Feb 8, 2024 4
- K-12BERT: BERT for K-12 education Online education platforms are powered by various NLP pipelines, which utilize models like BERT to aid in content curation. Since the inception of the pre-trained language models like BERT, there have also been many efforts toward adapting these pre-trained models to specific domains. However, there has not been a model specifically adapted for the education domain (particularly K-12) across subjects to the best of our knowledge. In this work, we propose to train a language model on a corpus of data curated by us across multiple subjects from various sources for K-12 education. We also evaluate our model, K12-BERT, on downstream tasks like hierarchical taxonomy tagging. 6 authors · May 24, 2022
3 One Embedder, Any Task: Instruction-Finetuned Text Embeddings We introduce INSTRUCTOR, a new method for computing text embeddings given task instructions: every text input is embedded together with instructions explaining the use case (e.g., task and domain descriptions). Unlike encoders from prior work that are more specialized, INSTRUCTOR is a single embedder that can generate text embeddings tailored to different downstream tasks and domains, without any further training. We first annotate instructions for 330 diverse tasks and train INSTRUCTOR on this multitask mixture with a contrastive loss. We evaluate INSTRUCTOR on 70 embedding evaluation tasks (66 of which are unseen during training), ranging from classification and information retrieval to semantic textual similarity and text generation evaluation. INSTRUCTOR, while having an order of magnitude fewer parameters than the previous best model, achieves state-of-the-art performance, with an average improvement of 3.4% compared to the previous best results on the 70 diverse datasets. Our analysis suggests that INSTRUCTOR is robust to changes in instructions, and that instruction finetuning mitigates the challenge of training a single model on diverse datasets. Our model, code, and data are available at https://instructor-embedding.github.io. 10 authors · Dec 19, 2022
1 SCITUNE: Aligning Large Language Models with Scientific Multimodal Instructions Instruction finetuning is a popular paradigm to align large language models (LLM) with human intent. Despite its popularity, this idea is less explored in improving the LLMs to align existing foundation models with scientific disciplines, concepts and goals. In this work, we present SciTune as a tuning framework to improve the ability of LLMs to follow scientific multimodal instructions. To test our methodology, we use a human-generated scientific instruction tuning dataset and train a large multimodal model LLaMA-SciTune that connects a vision encoder and LLM for science-focused visual and language understanding. In comparison to the models that are finetuned with machine generated data only, LLaMA-SciTune surpasses human performance on average and in many sub-categories on the ScienceQA benchmark. 4 authors · Jul 3, 2023
- LIMIT: Less Is More for Instruction Tuning Across Evaluation Paradigms Large Language Models are traditionally finetuned on large instruction datasets. However recent studies suggest that small, high-quality datasets can suffice for general purpose instruction following. This lack of consensus surrounding finetuning best practices is in part due to rapidly diverging approaches to LLM evaluation. In this study, we ask whether a small amount of diverse finetuning samples can improve performance on both traditional perplexity-based NLP benchmarks, and on open-ended, model-based evaluation. We finetune open-source MPT-7B and MPT-30B models on instruction finetuning datasets of various sizes ranging from 1k to 60k samples. We find that subsets of 1k-6k instruction finetuning samples are sufficient to achieve good performance on both (1) traditional NLP benchmarks and (2) model-based evaluation. Finally, we show that mixing textbook-style and open-ended QA finetuning datasets optimizes performance on both evaluation paradigms. 5 authors · Nov 21, 2023
1 FineTuneBench: How well do commercial fine-tuning APIs infuse knowledge into LLMs? There is great interest in fine-tuning frontier large language models (LLMs) to inject new information and update existing knowledge. While commercial LLM fine-tuning APIs from providers such as OpenAI and Google promise flexible adaptation for various applications, the efficacy of fine-tuning remains unclear. In this study, we introduce FineTuneBench, an evaluation framework and dataset for understanding how well commercial fine-tuning APIs can successfully learn new and updated knowledge. We analyze five frontier LLMs with commercially available fine-tuning APIs, including GPT-4o and Gemini 1.5 Pro, on their effectiveness in two settings: (1) ingesting novel information, such as recent news events and new people profiles, and (2) updating existing knowledge, such as updated medical guidelines and code frameworks. Our results reveal substantial shortcomings in all the models' abilities to effectively learn new information through fine-tuning, with an average generalization accuracy of 37% across all models. When updating existing knowledge, such as incorporating medical guideline updates, commercial fine-tuning APIs show even more limited capability (average generalization accuracy of 19%). Overall, fine-tuning GPT-4o mini is the most effective for infusing new knowledge and updating knowledge, followed by GPT-3.5 Turbo and GPT-4o. The fine-tuning APIs for Gemini 1.5 Flesh and Gemini 1.5 Pro are unable to learn new knowledge or update existing knowledge. These findings underscore a major shortcoming in using current commercial fine-tuning services to achieve reliable knowledge infusion in common scenarios. We open source the FineTuneBench dataset at https://github.com/kevinwu23/StanfordFineTuneBench. 3 authors · Nov 7, 2024
- Fine-Tuning Large Neural Language Models for Biomedical Natural Language Processing Motivation: A perennial challenge for biomedical researchers and clinical practitioners is to stay abreast with the rapid growth of publications and medical notes. Natural language processing (NLP) has emerged as a promising direction for taming information overload. In particular, large neural language models facilitate transfer learning by pretraining on unlabeled text, as exemplified by the successes of BERT models in various NLP applications. However, fine-tuning such models for an end task remains challenging, especially with small labeled datasets, which are common in biomedical NLP. Results: We conduct a systematic study on fine-tuning stability in biomedical NLP. We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains. Large models have potential to attain better performance, but increasing model size also exacerbates finetuning instability. We thus conduct a comprehensive exploration of techniques for addressing fine-tuning instability. We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications. Specifically, freezing lower layers is helpful for standard BERT-BASE models, while layerwise decay is more effective for BERT-LARGE and ELECTRA models. For low-resource text similarity tasks such as BIOSSES, reinitializing the top layer is the optimal strategy. Overall, domainspecific vocabulary and pretraining facilitate more robust models for fine-tuning. Based on these findings, we establish new state of the art on a wide range of biomedical NLP applications. Availability and implementation: To facilitate progress in biomedical NLP, we release our state-of-the-art pretrained and fine-tuned models: https://aka.ms/BLURB. 8 authors · Dec 14, 2021
2 LMFlow: An Extensible Toolkit for Finetuning and Inference of Large Foundation Models Large foundation models have demonstrated a great ability to achieve general human-level intelligence far beyond traditional approaches. As the technique keeps attracting attention from the AI community, more and more large foundation models have become publically available. However, most of those models exhibit a major deficiency in specialized-task applications, where the step of finetuning is still required for obtaining satisfactory performance. As the number of available models and specialized tasks keeps growing, the job of general finetuning becomes highly nontrivial. In this paper, we take the first step to address this issue. We introduce an extensible and lightweight toolkit, LMFlow, which aims to simplify the finetuning and inference of general large foundation models. LMFlow offers a complete finetuning workflow for a large foundation model to support personalized training with limited computing resources. Furthermore, it supports continuous pretraining, instruction tuning, parameter-efficient finetuning, alignment tuning, and large model inference, along with carefully designed and extensible APIs. This toolkit has been thoroughly tested and is available at https://github.com/OptimalScale/LMFlow. 7 authors · Jun 21, 2023
5 VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks. 7 authors · Mar 13 1
- Alloprof: a new French question-answer education dataset and its use in an information retrieval case study Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting. 3 authors · Feb 10, 2023
- NLU on Data Diets: Dynamic Data Subset Selection for NLP Classification Tasks Finetuning large language models inflates the costs of NLU applications and remains the bottleneck of development cycles. Recent works in computer vision use data pruning to reduce training time. Pruned data selection with static methods is based on a score calculated for each training example prior to finetuning, which involves important computational overhead. Moreover, the score may not necessarily be representative of sample importance throughout the entire training duration. We propose to address these issues with a refined version of dynamic data pruning, a curriculum which periodically scores and discards unimportant examples during finetuning. Our method leverages an EL2N metric that we extend to the joint intent and slot classification task, and an initial finetuning phase on the full train set. Our results on the GLUE benchmark and four joint NLU datasets show a better time-accuracy trade-off compared to static methods. Our method preserves full accuracy while training on 50% of the data points and reduces computational times by up to 41%. If we tolerate instead a minor drop of accuracy of 1%, we can prune 80% of the training examples for a reduction in finetuning time reaching 66%. 2 authors · Jun 5, 2023
4 M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. Numerous effective IFT datasets have been proposed in the recent past, but most focus on high resource languages such as English. In this work, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual, to better align LLMs on a diverse set of languages and tasks. M2Lingual contains a total of 182K IFT pairs that are built upon diverse seeds, covering 70 languages, 17 NLP tasks and general instruction-response pairs. LLMs finetuned with M2Lingual substantially outperform the majority of existing multilingual IFT datasets. Importantly, LLMs trained with M2Lingual consistently achieve competitive results across a wide variety of evaluation benchmarks compared to existing multilingual IFT datasets. Specifically, LLMs finetuned with M2Lingual achieve strong performance on our translated multilingual, multi-turn evaluation benchmark as well as a wide variety of multilingual tasks. Thus we contribute, and the 2 step Evol taxonomy used for its creation. M2Lingual repository - https://huggingface.co./datasets/ServiceNow-AI/M2Lingual 5 authors · Jun 24, 2024
- ClueWeb22: 10 Billion Web Documents with Visual and Semantic Information ClueWeb22, the newest iteration of the ClueWeb line of datasets, provides 10 billion web pages affiliated with rich information. Its design was influenced by the need for a high quality, large scale web corpus to support a range of academic and industry research, for example, in information systems, retrieval-augmented AI systems, and model pretraining. Compared with earlier ClueWeb corpora, the ClueWeb22 corpus is larger, more varied, of higher-quality, and aligned with the document distributions in commercial web search. Besides raw HTML, ClueWeb22 includes rich information about the web pages provided by industry-standard document understanding systems, including the visual representation of pages rendered by a web browser, parsed HTML structure information from a neural network parser, and pre-processed cleaned document text to lower the barrier to entry. Many of these signals have been widely used in industry but are available to the research community for the first time at this scale. 5 authors · Nov 28, 2022
- Where to start? Analyzing the potential value of intermediate models Previous studies observed that finetuned models may be better base models than the vanilla pretrained model. Such a model, finetuned on some source dataset, may provide a better starting point for a new finetuning process on a desired target dataset. Here, we perform a systematic analysis of this intertraining scheme, over a wide range of English classification tasks. Surprisingly, our analysis suggests that the potential intertraining gain can be analyzed independently for the target dataset under consideration, and for a base model being considered as a starting point. This is in contrast to current perception that the alignment between the target dataset and the source dataset used to generate the base model is a major factor in determining intertraining success. We analyze different aspects that contribute to each. Furthermore, we leverage our analysis to propose a practical and efficient approach to determine if and how to select a base model in real-world settings. Last, we release an updating ranking of best models in the HuggingFace hub per architecture https://ibm.github.io/model-recycling/. 5 authors · Oct 31, 2022