Papers
arxiv:2503.22673

ActionStudio: A Lightweight Framework for Data and Training of Large Action Models

Published on Mar 28
· Submitted by jianguozhang on Apr 1
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2503.22673 in a dataset README.md to link it from this page.

Spaces citing this paper 4

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.