Papers
arxiv:2503.01729

FLAME: A Federated Learning Benchmark for Robotic Manipulation

Published on Mar 3
· Submitted by vansin on Mar 6
Authors:
,
,
,
,

Abstract

Recent progress in robotic manipulation has been fueled by large-scale datasets collected across diverse environments. Training robotic manipulation policies on these datasets is traditionally performed in a centralized manner, raising concerns regarding scalability, adaptability, and data privacy. While federated learning enables decentralized, privacy-preserving training, its application to robotic manipulation remains largely unexplored. We introduce FLAME (Federated Learning Across Manipulation Environments), the first benchmark designed for federated learning in robotic manipulation. FLAME consists of: (i) a set of large-scale datasets of over 160,000 expert demonstrations of multiple manipulation tasks, collected across a wide range of simulated environments; (ii) a training and evaluation framework for robotic policy learning in a federated setting. We evaluate standard federated learning algorithms in FLAME, showing their potential for distributed policy learning and highlighting key challenges. Our benchmark establishes a foundation for scalable, adaptive, and privacy-aware robotic learning.

Community

Paper submitter

Recent progress in robotic manipulation has been fueled by large-scale
datasets collected across diverse environments. Training robotic manipulation
policies on these datasets is traditionally performed in a centralized manner,
raising concerns regarding scalability, adaptability, and data privacy. While
federated learning enables decentralized, privacy-preserving training, its
application to robotic manipulation remains largely unexplored. We introduce
FLAME (Federated Learning Across Manipulation Environments), the first
benchmark designed for federated learning in robotic manipulation. FLAME
consists of: (i) a set of large-scale datasets of over 160,000 expert
demonstrations of multiple manipulation tasks, collected across a wide range of
simulated environments; (ii) a training and evaluation framework for robotic
policy learning in a federated setting. We evaluate standard federated learning
algorithms in FLAME, showing their potential for distributed policy learning
and highlighting key challenges. Our benchmark establishes a foundation for
scalable, adaptive, and privacy-aware robotic learning.

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2503.01729 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2503.01729 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2503.01729 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.