Papers
arxiv:2502.03499

Omni-DNA: A Unified Genomic Foundation Model for Cross-Modal and Multi-Task Learning

Published on Feb 5
Authors:
,
,
,
,
,
,

Abstract

Large Language Models (LLMs) demonstrate remarkable generalizability across diverse tasks, yet genomic foundation models (GFMs) still require separate finetuning for each downstream application, creating significant overhead as model sizes grow. Moreover, existing GFMs are constrained by rigid output formats, limiting their applicability to various genomic tasks. In this work, we revisit the transformer-based auto-regressive models and introduce Omni-DNA, a family of cross-modal multi-task models ranging from 20 million to 1 billion parameters. Our approach consists of two stages: (i) pretraining on DNA sequences with next token prediction objective, and (ii) expanding the multi-modal task-specific tokens and finetuning for multiple downstream tasks simultaneously. When evaluated on the Nucleotide Transformer and GB benchmarks, Omni-DNA achieves state-of-the-art performance on 18 out of 26 tasks. Through multi-task finetuning, Omni-DNA addresses 10 acetylation and methylation tasks at once, surpassing models trained on each task individually. Finally, we design two complex genomic tasks, DNA2Function and Needle-in-DNA, which map DNA sequences to textual functional descriptions and images, respectively, indicating Omni-DNA's cross-modal capabilities to broaden the scope of genomic applications. All the models are available through https://huggingface.co./collections/zehui127

Community

Sign up or log in to comment

Models citing this paper 8

Browse 8 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2502.03499 in a dataset README.md to link it from this page.

Spaces citing this paper 2

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.