Papers
arxiv:2410.19816

DivShift: Exploring Domain-Specific Distribution Shift in Volunteer-Collected Biodiversity Datasets

Published on Oct 17, 2024
Authors:
,
,
,
,

Abstract

Climate change is negatively impacting the world's biodiversity. To build automated systems to monitor these negative biodiversity impacts, large-scale, volunteer-collected datasets like iNaturalist are built from community-identified, natural imagery. However, such volunteer-based data are opportunistic and lack a structured sampling strategy, resulting in geographic, temporal, observation quality, and socioeconomic, biases that stymie uptake of these models for downstream biodiversity monitoring tasks. Here we introduce DivShift North American West Coast (DivShift-NAWC), a curated dataset of almost 8 million iNaturalist plant images across the western coast of North America, for exploring the effects of these biases on deep learning model performance. We compare model performance across four known biases and observe that they indeed confound model performance. We suggest practical strategies for curating datasets to train deep learning models for monitoring climate change's impacts on the world's biodiversity.

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2410.19816 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2410.19816 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.