Papers
arxiv:2407.17396

Systematic Relational Reasoning With Epistemic Graph Neural Networks

Published on Jul 24, 2024
Authors:

Abstract

Developing models that can learn to reason is a notoriously challenging problem. We focus on reasoning in relational domains, where the use of Graph Neural Networks (GNNs) seems like a natural choice. However, previous work has shown that regular GNNs lack the ability to systematically generalize from training examples on test graphs requiring longer inference chains, which fundamentally limits their reasoning abilities. A common solution relies on neuro-symbolic methods that systematically reason by learning rules, but their scalability is often limited and they tend to make unrealistically strong assumptions, e.g.\ that the answer can always be inferred from a single relational path. We propose the Epistemic GNN (EpiGNN), a novel parameter-efficient and scalable GNN architecture with an epistemic inductive bias for systematic reasoning. Node embeddings in EpiGNNs are treated as epistemic states, and message passing is implemented accordingly. We show that EpiGNNs achieve state-of-the-art results on link prediction tasks that require systematic reasoning. Furthermore, for inductive knowledge graph completion, EpiGNNs rival the performance of state-of-the-art specialized approaches. Finally, we introduce two new benchmarks that go beyond standard relational reasoning by requiring the aggregation of information from multiple paths. Here, existing neuro-symbolic approaches fail, yet EpiGNNs learn to reason accurately. Code and datasets are available at https://github.com/erg0dic/gnn-sg.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2407.17396 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2407.17396 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.