Papers
arxiv:1912.07116

Image Processing Using Multi-Code GAN Prior

Published on Dec 15, 2019
Authors:
,
,

Abstract

Despite the success of Generative Adversarial Networks (GANs) in image synthesis, applying trained GAN models to real image processing remains challenging. Previous methods typically invert a target image back to the latent space either by back-propagation or by learning an additional encoder. However, the reconstructions from both of the methods are far from ideal. In this work, we propose a novel approach, called mGANprior, to incorporate the well-trained GANs as effective prior to a variety of image processing tasks. In particular, we employ multiple latent codes to generate multiple feature maps at some intermediate layer of the generator, then compose them with adaptive channel importance to recover the input image. Such an over-parameterization of the latent space significantly improves the image reconstruction quality, outperforming existing competitors. The resulting high-fidelity image reconstruction enables the trained GAN models as prior to many real-world applications, such as image colorization, super-resolution, image inpainting, and semantic manipulation. We further analyze the properties of the layer-wise representation learned by GAN models and shed light on what knowledge each layer is capable of representing.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1912.07116 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1912.07116 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/1912.07116 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.