--- license: apache-2.0 tags: - mergekit - merge - moe base_model: - mistralai/Mistral-7B-Instruct-v0.2 - mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral-instruct-moe-experimental results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.01 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.55 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 58.22 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.4 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.09 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.08 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard --- # Mistral Instruct MoE experimental This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit) using the `mixtral` branch. **This is an experimental model and has nothing to do with Mixtral. Mixtral is not a merge of models per se, but a transformer with MoE layers learned during training** This uses a random gate, so I expect not great results. We'll see! ## Merge Details ### Merge Method This model was merged using the MoE merge method. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 gate_mode: random dtype: bfloat16 experts: - source_model: mistralai/Mistral-7B-Instruct-v0.2 positive_prompts: [""] - source_model: mistralai/Mistral-7B-Instruct-v0.1 positive_prompts: [""] ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_osanseviero__mistral-instruct-moe-experimental) | Metric |Value| |---------------------------------|----:| |Avg. |61.39| |AI2 Reasoning Challenge (25-Shot)|61.01| |HellaSwag (10-Shot) |81.55| |MMLU (5-Shot) |58.22| |TruthfulQA (0-shot) |60.40| |Winogrande (5-shot) |76.09| |GSM8k (5-shot) |31.08|