import copy import warnings from dataclasses import asdict, dataclass from typing import Callable, List, Optional import streamlit as st import torch from torch import nn from transformers.generation.utils import (LogitsProcessorList, StoppingCriteriaList) from transformers.utils import logging from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel logger = logging.get_logger(__name__) st.set_page_config(page_title="Wukong-chat") import argparse @dataclass class GenerationConfig: max_length: int = 8192 max_new_tokens: int = 600 top_p: float = 0.8 temperature: float = 0.8 do_sample: bool = True repetition_penalty: float = 1.05 @torch.inference_mode() def generate_interactive( model, tokenizer, prompt, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, additional_eos_token_id: Optional[int] = None, **kwargs, ): inputs = tokenizer([prompt], return_tensors='pt') input_length = len(inputs['input_ids'][0]) for k, v in inputs.items(): inputs[k] = v.cuda() input_ids = inputs['input_ids'] _, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] if generation_config is None: generation_config = model.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612 generation_config.bos_token_id, generation_config.eos_token_id, ) if isinstance(eos_token_id, int): eos_token_id = [eos_token_id] if additional_eos_token_id is not None: eos_token_id.append(additional_eos_token_id) has_default_max_length = kwargs.get( 'max_length') is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: warnings.warn( f"Using 'max_length''s default ({repr(generation_config.max_length)}) \ to control the generation length. " 'This behaviour is deprecated and will be removed from the \ config in v5 of Transformers -- we' ' recommend using `max_new_tokens` to control the maximum \ length of the generation.', UserWarning, ) elif generation_config.max_new_tokens is not None: generation_config.max_length = generation_config.max_new_tokens + \ input_ids_seq_length if not has_default_max_length: logger.warn( # pylint: disable=W4902 f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) " f"and 'max_length'(={generation_config.max_length}) seem to " "have been set. 'max_new_tokens' will take precedence. " 'Please refer to the documentation for more information. ' '(https://huggingface.co./docs/transformers/main/' 'en/main_classes/text_generation)', UserWarning, ) if input_ids_seq_length >= generation_config.max_length: input_ids_string = 'input_ids' logger.warning( f"Input length of {input_ids_string} is {input_ids_seq_length}, " f"but 'max_length' is set to {generation_config.max_length}. " 'This can lead to unexpected behavior. You should consider' " increasing 'max_new_tokens'.") # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None \ else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None \ else StoppingCriteriaList() logits_processor = model._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, ) stopping_criteria = model._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria) logits_warper = model._get_logits_warper(generation_config) unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) scores = None while True: model_inputs = model.prepare_inputs_for_generation( input_ids, **model_kwargs) # forward pass to get next token outputs = model( **model_inputs, return_dict=True, output_attentions=False, output_hidden_states=False, ) next_token_logits = outputs.logits[:, -1, :] # pre-process distribution next_token_scores = logits_processor(input_ids, next_token_logits) next_token_scores = logits_warper(input_ids, next_token_scores) # sample probs = nn.functional.softmax(next_token_scores, dim=-1) if generation_config.do_sample: next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(probs, dim=-1) # update generated ids, model inputs, and length for next step input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) model_kwargs = model._update_model_kwargs_for_generation( outputs, model_kwargs, is_encoder_decoder=False) unfinished_sequences = unfinished_sequences.mul( (min(next_tokens != i for i in eos_token_id)).long()) output_token_ids = input_ids[0].cpu().tolist() output_token_ids = output_token_ids[input_length:] for each_eos_token_id in eos_token_id: if output_token_ids[-1] == each_eos_token_id: output_token_ids = output_token_ids[:-1] response = tokenizer.decode(output_token_ids, skip_special_tokens=True) yield response # stop when each sentence is finished # or if we exceed the maximum length if unfinished_sequences.max() == 0 or stopping_criteria( input_ids, scores): break def on_btn_click(): del st.session_state.messages @st.cache_resource def load_model(model_name_or_path, adapter_name_or_path=None, load_in_4bit=False): if load_in_4bit: quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, ) else: quantization_config = None model = AutoModelForCausalLM.from_pretrained( model_name_or_path, load_in_4bit=load_in_4bit, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto', quantization_config=quantization_config ) if adapter_name_or_path is not None: model = PeftModel.from_pretrained(model, adapter_name_or_path) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) return model, tokenizer def prepare_generation_config(): with st.sidebar: st.title('超参数面板') # 大输入框 system_prompt_content = st.text_area('系统提示词', '''You are a creative super artificial intelligence assistant, possessing all the knowledge of humankind. Your name is csg-wukong, developed by OpenCSG. You need to understand and infer the true intentions of users based on the topics discussed in the chat history, and respond to user questions correctly as required. You enjoy responding to users with accurate and insightful answers. Please pay attention to the appropriate style and format when replying, try to avoid repetitive words and sentences, and keep your responses as concise and profound as possible. You carefully consider the context of the discussion when replying to users. When the user says "continue," please proceed with the continuation of the previous assistant's response.''', height=200, key='system_prompt_content' ) max_new_tokens = st.slider('最大回复长度', 100, 8192, 660, step=8) top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01) temperature = st.slider('温度系数', 0.0, 1.0, 0.7, step=0.01) repetition_penalty = st.slider("重复惩罚系数", 1.0, 2.0, 1.07, step=0.01) st.button('重置聊天', on_click=on_btn_click) generation_config = GenerationConfig(max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty, ) return generation_config system_prompt = '<|system|>\n{content}' user_prompt = '<|user|>\n{content}\n' robot_prompt = '<|assistant|>\n{content}\n' cur_query_prompt = '<|user|>\n{content}\n<|assistant|>\n' def combine_history(prompt): messages = st.session_state.messages total_prompt = '' for message in messages: cur_content = message['content'] if message['role'] == 'user': cur_prompt = user_prompt.format(content=cur_content) elif message['role'] == 'robot': cur_prompt = robot_prompt.format(content=cur_content) else: raise RuntimeError total_prompt += cur_prompt system_prompt_content = st.session_state.system_prompt_content system = system_prompt.format(content=system_prompt_content) total_prompt = system + total_prompt + cur_query_prompt.format(content=prompt) return total_prompt def main(model_name_or_path, adapter_name_or_path): # torch.cuda.empty_cache() print('load model...') model, tokenizer = load_model(model_name_or_path, adapter_name_or_path=adapter_name_or_path, load_in_4bit=False) print('load model end.') st.title('Wukong-chat') generation_config = prepare_generation_config() # Initialize chat history if 'messages' not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message['role']): st.markdown(message['content']) # Accept user input if prompt := st.chat_input('hello'): # Display user message in chat message container with st.chat_message('user'): st.markdown(prompt) real_prompt = combine_history(prompt) # Add user message to chat history st.session_state.messages.append({ 'role': 'user', 'content': prompt, }) with st.chat_message('robot'): message_placeholder = st.empty() for cur_response in generate_interactive( model=model, tokenizer=tokenizer, prompt=real_prompt, additional_eos_token_id=128009, **asdict(generation_config), ): # Display robot response in chat message container message_placeholder.markdown(cur_response + '▌') message_placeholder.markdown(cur_response) # Add robot response to chat history st.session_state.messages.append({ 'role': 'robot', 'content': cur_response, # pylint: disable=undefined-loop-variable }) torch.cuda.empty_cache() if __name__ == '__main__': import sys model_name_or_path = sys.argv[1] if len(sys.argv) >= 3: adapter_name_or_path = sys.argv[2] else: adapter_name_or_path = None main(model_name_or_path, adapter_name_or_path)