# coding=utf-8 # Copyright 2025 The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for MiniCPMO. """ import math import re from typing import List from typing import Literal from typing import Optional from typing import Union import numpy as np import torch import torchaudio from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PreTokenizedInput from transformers.tokenization_utils_base import TextInput from transformers.utils import TensorType from .image_processing_minicpmv import MiniCPMOBatchFeature class MiniCPMOProcessor(ProcessorMixin): r""" Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. Args: image_processor ([`MiniCPMVImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerWrapper`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "feature_extractor", "tokenizer"] feature_extractor_class = "WhisperFeatureExtractor" image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None): super().__init__(image_processor, feature_extractor, tokenizer) self.version = image_processor.version def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: ImageInput = None, audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None, audio_parts: Optional[list] = None, max_length: Optional[int] = None, do_pad: Optional[bool] = True, max_slice_nums: int = None, use_image_id: bool = True, chunk_input: bool = False, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, sampling_rate: Optional[int] = 16000, **kwargs, ) -> MiniCPMOBatchFeature: if images is not None: image_inputs = self.image_processor( images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors ) else: image_inputs = None if audios is not None: audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract( audios, audio_parts, chunk_input, sampling_rate ) else: audio_features, audio_feature_lens, audio_phs = [], [], [] model_inputs = self._convert_omni_to_inputs( image_inputs, audio_phs, text, max_slice_nums=max_slice_nums, use_image_id=use_image_id, max_length=max_length, **kwargs, ) model_inputs["audio_features"] = audio_features model_inputs["audio_feature_lens"] = audio_feature_lens return MiniCPMOBatchFeature(data={**model_inputs}) def audio_feature_extract( self, audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]], audio_parts: Optional[list] = None, chunk_input: Optional[bool] = False, sampling_rate: Optional[int] = None, chunk_length: Optional[int] = 1, **kwargs, ): def get_audio_placeholder(audio_lens, chunk_input): pool_step = 2 feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length) feature_lens = (feature_lens - 1) // 2 + 1 output_lens = (feature_lens - pool_step) // pool_step + 1 if chunk_input: fbank_feat_in_chunk = int(chunk_length * 100) cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1 audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1 num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk place_holders = "" total_unk_len = 0 for _ in range(num_audio_chunks): unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len) place_holders += self.tokenizer.audio_start + "" * unk_len + self.tokenizer.audio_end total_unk_len += unk_len audio_placeholder = place_holders else: audio_placeholder = self.tokenizer.audio_start + "" * output_lens + self.tokenizer.audio_end return audio_placeholder if isinstance(audios, np.ndarray): audios_list = [[audios]] elif isinstance(audios[0], np.ndarray): audios_list = [audios] else: audios_list = audios if audio_parts is not None: assert len(audio_parts) == len(audios_list) for parts, audios in zip(audio_parts, audios_list): assert len(parts) == len(audios) audio_feature_lens_list = [] audio_ph_list = [] audio_features_all = [] # audio placeholder not dependent on audio_parts for audios in audios_list: if audios: audio_ph_list.append([get_audio_placeholder(len(a), chunk_input) for a in audios]) else: audio_ph_list.append([]) for idx, audios in enumerate(audios_list): if audio_parts is not None: # same audio part merge audio_part = audio_parts[idx] merge_audio = [] cur_audio = [] for aid, (part, audio) in enumerate(zip(audio_part, audios)): if aid == 0 or audio_part[aid] == audio_part[aid - 1]: cur_audio.append(audio) else: merge_audio.append(np.hstack(cur_audio)) cur_audio = [audio] if cur_audio: merge_audio.append(np.hstack(cur_audio)) else: merge_audio = audios audio_feature_lens = [] # If the audio exceeds 30 seconds, split it into chunks every 30 seconds. final_merge_audio = [] max_audio_inp_len = 30 * sampling_rate for audio in merge_audio: if len(audio) <= max_audio_inp_len: final_merge_audio.append(audio) else: for i in range(math.ceil(len(audio) / max_audio_inp_len)): final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len]) if audios: audio_inputs = self.feature_extractor( final_merge_audio, sampling_rate=sampling_rate, return_attention_mask=True, padding="max_length", return_tensors="pt", **kwargs, ) audio_feature = audio_inputs["input_features"] actual_lens = audio_inputs["attention_mask"].sum(dim=1) for feat, lens in zip(audio_feature, actual_lens): audio_features_all.append(feat[:, :lens]) audio_feature_lens.append(lens) audio_feature_lens = torch.hstack(audio_feature_lens) audio_feature_lens_list.append(audio_feature_lens) else: audio_feature_lens_list.append([]) if audio_features_all: audio_features = [i.permute(1, 0) for i in audio_features_all] audio_features = torch.nn.utils.rnn.pad_sequence( audio_features, batch_first=True, padding_value=0.0 ).permute(0, 2, 1) else: audio_features = [] return audio_features, audio_feature_lens_list, audio_ph_list # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ output_ids = args[0] result_text = [] for result in output_ids: result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) return result_text # return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ result = args[0] result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id or ( hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id ): result = result[:-1] return self.tokenizer.decode(result, *args[1:], **kwargs).strip() def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs): input_ids = self.tokenizer.encode(input_str, **kwargs) if max_inp_length is not None: input_ids = input_ids[:max_inp_length] input_ids = torch.tensor(input_ids, dtype=torch.int32) ## image bound start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id) end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id) image_start_idx = torch.where(start_cond)[0] image_start_idx += 1 image_end_idx = torch.where(end_cond)[0] valid_image_nums = max(len(image_start_idx), len(image_end_idx)) image_bounds = torch.hstack( [ image_start_idx[:valid_image_nums].unsqueeze(-1), image_end_idx[:valid_image_nums].unsqueeze(-1), ] ) ## audio bound audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0] audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0] assert len(audio_start_idx) == len(audio_end_idx) audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)]) spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0] spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0] assert len(spk_start_idx) == len(spk_end_idx) spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)]) return input_ids, image_bounds, audio_bounds, spk_bounds def _convert_omni_to_inputs( self, images, audio_phs, texts: Union[str, List[str]], truncation=None, max_length=None, max_slice_nums=None, use_image_id=None, return_tensors=None, **kwargs, ): if images is None and audio_phs is None: model_inputs = self.tokenizer( texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs ) return MiniCPMOBatchFeature(data={**model_inputs}) image_pattern = "./" audio_pattern = "" split_pattern = f"({image_pattern}|{audio_pattern})" if isinstance(texts, str): texts = [texts] bs = len(texts) if images is not None: images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] else: images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs input_ids_list = [] image_bounds_list = [] audio_bounds_list = [] spk_bounds_list = [] for index, text in enumerate(texts): text_chunks = re.split(split_pattern, text) image_tags = re.findall(image_pattern, text) audio_tags = re.findall(audio_pattern, text) if image_tags: assert images is not None assert len(image_tags) == len(image_sizes[index]) if audio_tags: assert audio_phs is not None assert len(audio_tags) == len(audio_phs[index]) image_id = 0 audio_id = 0 for i, chunk in enumerate(text_chunks): if chunk == image_pattern: image_placeholder = self.image_processor.get_slice_image_placeholder( image_sizes[index][image_id], image_id, max_slice_nums, use_image_id ) image_id += 1 text_chunks[i] = image_placeholder elif chunk == audio_pattern: audio_placeholder = audio_phs[index][audio_id] audio_id += 1 text_chunks[i] = audio_placeholder final_text = "".join(text_chunks) input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs) input_ids_list.append(input_ids) image_bounds_list.append(image_bounds) audio_bounds_list.append(audio_bounds) spk_bounds_list.append(spk_bounds) padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left") attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool) for i, length in enumerate(padding_lengths): image_bounds_list[i] = image_bounds_list[i] + length audio_bounds_list[i] = audio_bounds_list[i] + length spk_bounds_list[i] = spk_bounds_list[i] + length attention_mask[i, :length] = False data = { "input_ids": padded_input_ids, "attention_mask": attention_mask, "pixel_values": images, "image_sizes": image_sizes, "image_bound": image_bounds_list, "tgt_sizes": tgt_sizes, "audio_bounds": audio_bounds_list, "spk_bounds": spk_bounds_list, } return data @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names)) def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"): items = [] if isinstance(inputs[0], list): assert isinstance(inputs[0][0], torch.Tensor) for it in inputs: for tr in it: items.append(tr) else: assert isinstance(inputs[0], torch.Tensor) items = inputs batch_size = len(items) shape = items[0].shape dim = len(shape) assert dim <= 2 if max_length is None: max_length = 0 max_length = max(max_length, max(item.shape[-1] for item in items)) min_length = min(item.shape[-1] for item in items) dtype = items[0].dtype if dim == 0: return torch.stack([item for item in items], dim=0), [0] elif dim == 1: if max_length == min_length: return torch.stack([item for item in items], dim=0), [0] * batch_size tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value else: tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value padding_length = [] for i, item in enumerate(items): if dim == 1: if padding_side == "left": tensor[i, -len(item) :] = item.clone() else: tensor[i, : len(item)] = item.clone() elif dim == 2: if padding_side == "left": tensor[i, -len(item) :, :] = item.clone() else: tensor[i, : len(item), :] = item.clone() padding_length.append(tensor.shape[-1] - len(item)) return tensor, padding_length class MelSpectrogramFeatures(torch.nn.Module): def __init__( self, sample_rate=24000, n_fft=1024, hop_length=256, n_mels=100, padding: Literal["center", "same"] = "center", ): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.mel_spec = torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, center=padding == "center", power=1, ) def __call__(self, audio: torch.Tensor) -> torch.Tensor: """ audio: Tensor([num_channels, num_samples]) """ return super().__call__(audio) def forward(self, audio: torch.Tensor) -> torch.Tensor: """ audio: Tensor([num_channels, num_samples]) """ mel: torch.Tensor = self.mel_spec(audio) features = torch.log(torch.clip(mel, min=1e-5)) return features class ChatTTSProcessor: def __init__(self, text_tokenizer): self.audio_processor = MelSpectrogramFeatures() self.text_tokenizer = text_tokenizer def __call__(self, text_list, audio_list): assert len(text_list) == len(audio_list) input_ids_varlen = [] for text in text_list: input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len] input_ids_ = input_ids_.squeeze(0) # [seq_len] input_ids_varlen.append(input_ids_) audio_features_varlen = [] for audio in audio_list: assert audio.shape.__len__() == 1 # [seq_len] try: mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel] except Exception as e: print( "fuck! there is an error with audio waveform. If you use a dataset __getitem__, will skip and use next data as compensate, will not halt training." ) raise e audio_features_varlen.append(mel) return { "tts_input_ids_varlen": input_ids_varlen, # return List[Tensor] "tts_input_features_varlen": audio_features_varlen, # return List[Tensor] }