sanchit-gandhi commited on
Commit
e9ece4c
·
1 Parent(s): 3218f45
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Editor-based HTTP Client requests
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
.idea/inspectionProfiles/Project_Default.xml ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <profile version="1.0">
3
+ <option name="myName" value="Project Default" />
4
+ <inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
5
+ <option name="ignoredPackages">
6
+ <value>
7
+ <list size="10">
8
+ <item index="0" class="java.lang.String" itemvalue="tensorstore" />
9
+ <item index="1" class="java.lang.String" itemvalue="pytorch-lightning" />
10
+ <item index="2" class="java.lang.String" itemvalue="lxml" />
11
+ <item index="3" class="java.lang.String" itemvalue="torchvision" />
12
+ <item index="4" class="java.lang.String" itemvalue="pytorch-pretrained-biggan" />
13
+ <item index="5" class="java.lang.String" itemvalue="kornia" />
14
+ <item index="6" class="java.lang.String" itemvalue="accelerate" />
15
+ <item index="7" class="java.lang.String" itemvalue="fire" />
16
+ <item index="8" class="java.lang.String" itemvalue="einops" />
17
+ <item index="9" class="java.lang.String" itemvalue="retry" />
18
+ </list>
19
+ </value>
20
+ </option>
21
+ </inspection_tool>
22
+ </profile>
23
+ </component>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7" project-jdk-type="Python SDK" />
4
+ </project>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/whisper-tiny.iml" filepath="$PROJECT_DIR$/.idea/whisper-tiny.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="" vcs="Git" />
5
+ </component>
6
+ </project>
.idea/whisper-tiny.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
README.md CHANGED
@@ -351,7 +351,8 @@ This code snippet shows how to evaluate Whisper Tiny on [LibriSpeech test-clean]
351
  The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
352
  algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
353
  [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
354
- method, which can also be extended to predict utterance level timestamps:
 
355
 
356
  ```python
357
  >>> import torch
 
351
  The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
352
  algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
353
  [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
354
+ method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. It can also be extended to
355
+ predict utterance level timestamps by passing `return_timestamps=True`:
356
 
357
  ```python
358
  >>> import torch