--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emikes-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # emikes-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0253 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3954 | 1.25 | 10 | 0.3092 | 0.8571 | | 0.1249 | 2.5 | 20 | 0.1407 | 1.0 | | 0.046 | 3.75 | 30 | 0.0666 | 1.0 | | 0.034 | 5.0 | 40 | 0.1060 | 0.9286 | | 0.0255 | 6.25 | 50 | 0.0295 | 1.0 | | 0.0198 | 7.5 | 60 | 0.0274 | 1.0 | | 0.0209 | 8.75 | 70 | 0.1060 | 0.9286 | | 0.02 | 10.0 | 80 | 0.0253 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0