--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8242677824267782 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Accuracy: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6782 | 1.78 | 15 | 0.5922 | 0.7008 | | 0.5096 | 3.56 | 30 | 0.5153 | 0.7552 | | 0.4434 | 5.33 | 45 | 0.4520 | 0.7762 | | 0.3844 | 7.11 | 60 | 0.4381 | 0.8013 | | 0.3642 | 8.89 | 75 | 0.4359 | 0.8054 | | 0.322 | 10.67 | 90 | 0.4086 | 0.8138 | | 0.2845 | 12.44 | 105 | 0.4111 | 0.8201 | | 0.2588 | 14.22 | 120 | 0.4100 | 0.8159 | | 0.2516 | 16.0 | 135 | 0.4122 | 0.8389 | | 0.2375 | 17.78 | 150 | 0.4085 | 0.8243 | | 0.2309 | 19.56 | 165 | 0.4149 | 0.8117 | | 0.2175 | 21.33 | 180 | 0.4274 | 0.8243 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0