--- license: mit base_model: microsoft/phi-1_5 tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - HuggingFaceH4/ultrachat_200k model-index: - name: phi-1_5_sft results: [] --- # phi-1_5_sft This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co./microsoft/phi-1_5) on the HuggingFaceH4/ultrachat_200k dataset. It achieves the following results on the evaluation set: - Loss: 1.2542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 120 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3099 | 0.1 | 100 | 1.3398 | | 1.3131 | 0.2 | 200 | 1.3159 | | 1.3009 | 0.3 | 300 | 1.3046 | | 1.2915 | 0.4 | 400 | 1.2967 | | 1.2714 | 0.5 | 500 | 1.2906 | | 1.2811 | 0.6 | 600 | 1.2854 | | 1.2621 | 0.7 | 700 | 1.2807 | | 1.2406 | 0.8 | 800 | 1.2767 | | 1.2371 | 0.9 | 900 | 1.2731 | | 1.2547 | 1.0 | 1000 | 1.2699 | | 1.2085 | 1.1 | 1100 | 1.2693 | | 1.2253 | 1.2 | 1200 | 1.2669 | | 1.215 | 1.3 | 1300 | 1.2649 | | 1.2103 | 1.4 | 1400 | 1.2630 | | 1.2081 | 1.5 | 1500 | 1.2612 | | 1.2033 | 1.6 | 1600 | 1.2597 | | 1.2307 | 1.7 | 1700 | 1.2582 | | 1.2038 | 1.8 | 1800 | 1.2568 | | 1.2014 | 1.9 | 1900 | 1.2557 | | 1.188 | 2.0 | 2000 | 1.2546 | | 1.1473 | 2.1 | 2100 | 1.2563 | | 1.1872 | 2.2 | 2200 | 1.2559 | | 1.2086 | 2.3 | 2300 | 1.2553 | | 1.1896 | 2.4 | 2400 | 1.2550 | | 1.1733 | 2.5 | 2500 | 1.2548 | | 1.1665 | 2.6 | 2600 | 1.2544 | | 1.1499 | 2.7 | 2700 | 1.2543 | | 1.1779 | 2.8 | 2800 | 1.2542 | | 1.1746 | 2.9 | 2900 | 1.2542 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0