File size: 1,370 Bytes
ef69ed7
e5ddef7
 
 
ef69ed7
e5ddef7
1c97bf7
e5ddef7
1c97bf7
e5ddef7
1c97bf7
e5ddef7
 
1c97bf7
e5ddef7
 
1c97bf7
e5ddef7
 
 
 
ef69ed7
e5ddef7
 
 
 
 
 
 
d930531
e5ddef7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
language:
- en
- de
license: mit
widget:
- text: fix:lets do a comparsion
  example_title: EN 1
- text: fix:Their going to be here so0n
  example_title: EN 2
- text: fix:das idst ein neuZr test
  example_title: DE 1
- text: >-
    fix:ein dransformer isd ein mthode mit der ein compuder eine volge von zeichn
    übersetz
  example_title: DE 2
- text: fix:can we mix the languages können wir die sprachen mischen
  example_title: EN and DE
metrics:
- cer
pipeline_tag: text2text-generation
---

This is an experimental model that should fix your typos and punctuation.
If you like to run your own experiments or train for a different language, take a look at [the code](https://github.com/oliverguhr/spelling).


## Model description

This is a proof of concept *spelling correction model for English and German*.

## Intended uses & limitations

This project is work in progress, be aware that the model can produce artefacts. 
You can test the model using the pipeline-interface:

```python
from transformers import pipeline

fix_spelling_pipeline = pipeline("text2text-generation",model="oliverguhr/spelling-correction-multilingual-base")
def fix_spelling(text, max_length = 256):
    return fix_spelling_pipeline("fix:"+text,max_length = max_length)

print(fix_spelling_pipeline("can we mix the languages können wir die sprachen mischen",max_length=2048))
```