|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM |
|
import torch |
|
import gradio as gr |
|
|
|
|
|
BASE_MODEL_NAME = "tiiuae/falcon-7b" |
|
MODEL_NAME = "ohtaman/falcon-7b-kokkai2022-lora" |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(BASE_MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
model = PeftModel.from_pretrained(base_model, MODEL_NAME) |
|
|
|
|
|
def generate_prompt(question: str, questioner: str="", answerer: str=""): |
|
return f"""# question |
|
{questioner} |
|
|
|
{question} |
|
|
|
# answer |
|
{answerer} |
|
|
|
""" |
|
|
|
def evaluate( |
|
quetion: str, |
|
questioner: str="", |
|
answerer: str="", |
|
temperature: float=0.1, |
|
top_p: float=0.75, |
|
top_k: int=40, |
|
num_beams: int=4, |
|
repetition_penalty: float=1.05, |
|
outputs.sequences[0, input_length:-1]_tokens: int=256, |
|
**kwargs |
|
): |
|
prompt = generate_prompt(question, questioner, answerer) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(model.device) |
|
n_input_tokens = input_ids.shape[1] |
|
|
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
repetition_penalty=repetition_penalty, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0, n_input_tokens:-1] |
|
return tokenizer.decode(s) |
|
|
|
|
|
g = gr.Interface( |
|
fn=evaluate, |
|
inputs=[ |
|
gr.components.Textbox(lines=5, label="Question", placeholder="Question"), |
|
gr.components.Textbox(lines=1, label="Questioner", placeholder="Questioner"), |
|
gr.components.Textbox(lines=1, label="Answerer", placeholder="Answerer"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), |
|
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), |
|
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), |
|
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), |
|
gr.components.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty"), |
|
gr.components.Slider(minimum=1, maximum=512, step=1, value=128, label="Max tokens"), |
|
], |
|
outputs=[ |
|
gr.inputs.Textbox( |
|
lines=5, |
|
label="Output", |
|
) |
|
], |
|
title="🏛️: Kokkai 2022", |
|
description="falcon-7b-kokkai2022 is a 7B-parameter model trained on Japan's 2022 Diet proceedings using LoRA based on [tiiuae/falcon-7b](https://huggingface.co./tiiuae/falcon-7b).", |
|
) |
|
g.queue(concurrency_count=1) |
|
g.launch() |