--- license: apache-2.0 base_model: - mlabonne/AlphaMonarch-7B - beowolx/CodeNinja-1.0-OpenChat-7B tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - beowolx/CodeNinja-1.0-OpenChat-7B --- # MoE_AlphaMonarch_CodeNinja MoE_AlphaMonarch_CodeNinja is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co./mlabonne/AlphaMonarch-7B) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co./beowolx/CodeNinja-1.0-OpenChat-7B) ## 🧩 Configuration ```yaml base_model: mlabonne/AlphaMonarch-7B experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "ntotsuka123/MoE_AlphaMonarch_CodeNinja" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```