ntotsuka123 commited on
Commit
6104483
·
verified ·
1 Parent(s): 9dbcdc7

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +65 -0
  2. config.json +32 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - mlabonne/AlphaMonarch-7B
5
+ - beowolx/CodeNinja-1.0-OpenChat-7B
6
+ tags:
7
+ - moe
8
+ - frankenmoe
9
+ - merge
10
+ - mergekit
11
+ - lazymergekit
12
+ - mlabonne/AlphaMonarch-7B
13
+ - beowolx/CodeNinja-1.0-OpenChat-7B
14
+ ---
15
+
16
+ # MoE_AlphaMonarch_CodeNinja
17
+
18
+ MoE_AlphaMonarch_CodeNinja is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
19
+ * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
20
+ * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B)
21
+
22
+ ## 🧩 Configuration
23
+
24
+ ```yaml
25
+ base_model: mlabonne/AlphaMonarch-7B
26
+ experts:
27
+ - source_model: mlabonne/AlphaMonarch-7B
28
+ positive_prompts:
29
+ - "chat"
30
+ - "assistant"
31
+ - "tell me"
32
+ - "explain"
33
+ - "I want"
34
+ - source_model: beowolx/CodeNinja-1.0-OpenChat-7B
35
+ positive_prompts:
36
+ - "code"
37
+ - "python"
38
+ - "javascript"
39
+ - "programming"
40
+ - "algorithm"
41
+ ```
42
+
43
+ ## 💻 Usage
44
+
45
+ ```python
46
+ !pip install -qU transformers bitsandbytes accelerate
47
+
48
+ from transformers import AutoTokenizer
49
+ import transformers
50
+ import torch
51
+
52
+ model = "ntotsuka123/MoE_AlphaMonarch_CodeNinja"
53
+
54
+ tokenizer = AutoTokenizer.from_pretrained(model)
55
+ pipeline = transformers.pipeline(
56
+ "text-generation",
57
+ model=model,
58
+ model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
59
+ )
60
+
61
+ messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
62
+ prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
63
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
64
+ print(outputs[0]["generated_text"])
65
+ ```
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mlabonne/AlphaMonarch-7B",
3
+ "architectures": [
4
+ "MixtralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mixtral",
16
+ "num_attention_heads": 32,
17
+ "num_experts_per_tok": 2,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "num_local_experts": 2,
21
+ "output_router_logits": false,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_theta": 10000.0,
24
+ "router_aux_loss_coef": 0.001,
25
+ "router_jitter_noise": 0.0,
26
+ "sliding_window": null,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.47.1",
30
+ "use_cache": true,
31
+ "vocab_size": 32000
32
+ }