Push to Hub
Browse files- PPO-CartPole-v1.zip +3 -0
- PPO-CartPole-v1/_stable_baselines3_version +1 -0
- PPO-CartPole-v1/data +99 -0
- PPO-CartPole-v1/policy.optimizer.pth +3 -0
- PPO-CartPole-v1/policy.pth +3 -0
- PPO-CartPole-v1/pytorch_variables.pth +3 -0
- PPO-CartPole-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3366fe996f94322357ad127abd03e171265624257738e5f2121125d9d6d9308c
|
3 |
+
size 138933
|
PPO-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
PPO-CartPole-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f69ebff0940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69ebff09d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69ebff0a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69ebff0af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f69ebff0b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f69ebff0c10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69ebff0ca0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69ebff0d30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f69ebff0dc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69ebff0e50>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69ebff0ee0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69ebff0f70>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f69ebf8c2c0>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 30720,
|
25 |
+
"_total_timesteps": 30000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1705052500862472675,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAKAsQj1wugU/eAdUvbaac76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.02400000000000002,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFyAAAAAAACMAWyUS3KMAXSUR0BjzQqur6tUdX2UKGgGR0BWgAAAAAAAaAdLWmgIR0BjzmjfvWpZdX2UKGgGR0BWAAAAAAAAaAdLWGgIR0Bjz9B0IToMdX2UKGgGR0BBAAAAAAAAaAdLImgIR0Bj0E7dSEUTdX2UKGgGR0BFgAAAAAAAaAdLK2gIR0Bj0N0Lc9GJdX2UKGgGR0BjAAAAAAAAaAdLmGgIR0Bj03ci4axYdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0Bj1LmOlwcYdX2UKGgGR0BzIAAAAAAAaAdNMgFoCEdAY9lbfxc3VHV9lChoBkdAToAAAAAAAGgHSz1oCEdAY9pDziCJ43V9lChoBkdAVQAAAAAAAGgHS1RoCEdAY9t/rjYI0XV9lChoBkdASAAAAAAAAGgHSzBoCEdAY9wxQizLOnV9lChoBkdAKgAAAAAAAGgHSw1oCEdAY9xpJPIn0HV9lChoBkdAQYAAAAAAAGgHSyNoCEdAY9zoK2KEWnV9lChoBkdAXkAAAAAAAGgHS3loCEdAY96do371qXV9lChoBkdAXAAAAAAAAGgHS3BoCEdAY+BgRbr1NHV9lChoBkdAQYAAAAAAAGgHSyNoCEdAY+Da6BiCrnV9lChoBkdARoAAAAAAAGgHSy1oCEdAZAxie/YapHV9lChoBkdAX4AAAAAAAGgHS35oCEdAZA5bvgFX73V9lChoBkdAYuAAAAAAAGgHS5doCEdAZBDzKcNH6XV9lChoBkdANQAAAAAAAGgHSxVoCEdAZBFJHRTjvXV9lChoBkdAYCAAAAAAAGgHS4FoCEdAZBNYQJ5VwXV9lChoBkdASQAAAAAAAGgHSzJoCEdAZBQNoakylHV9lChoBkdAXwAAAAAAAGgHS3xoCEdAZBXPzFuNxXV9lChoBkdAPwAAAAAAAGgHSx9oCEdAZBY/8EV32XV9lChoBkdAaWAAAAAAAGgHS8toCEdAZBky0rsjV3V9lChoBkdAUMAAAAAAAGgHS0NoCEdAZBozu4PPLXV9lChoBkdAVIAAAAAAAGgHS1JoCEdAZBtkjopx3nV9lChoBkdAXIAAAAAAAGgHS3JoCEdAZB04NI9TxXV9lChoBkdAYOAAAAAAAGgHS4doCEdAZB82vStvGnV9lChoBkdAVUAAAAAAAGgHS1VoCEdAZCBljEvTPXV9lChoBkdAYwAAAAAAAGgHS5hoCEdAZCKgIyCWeHV9lChoBkdAXgAAAAAAAGgHS3hoCEdAZCRXVbzK93V9lChoBkdAYcAAAAAAAGgHS45oCEdAZCZYJ3PiUHV9lChoBkdAV0AAAAAAAGgHS11oCEdAZCehQFcIJXV9lChoBkdAKAAAAAAAAGgHSwxoCEdAZCfP8AJb+3V9lChoBkdAQwAAAAAAAGgHSyZoCEdAZChTLns9jnV9lChoBkdAcEAAAAAAAGgHTQQBaAhHQGRTZ9uxbB51fZQoaAZHQFoAAAAAAABoB0toaAhHQGRU6JIlMRJ1fZQoaAZHQGEAAAAAAABoB0uIaAhHQGRXM7dSEUV1fZQoaAZHQGPgAAAAAABoB0ufaAhHQGRaAZ0jkdV1fZQoaAZHQGggAAAAAABoB0vBaAhHQGRc56D5CWx1fZQoaAZHQHMwAAAAAABoB00zAWgIR0BkYWPkq+ajdX2UKGgGR0BfQAAAAAAAaAdLfWgIR0BkYzNnoPkJdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0BkZcY64lQedX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BkZ/Kp1ie/dX2UKGgGR0BlAAAAAAAAaAdLqGgIR0Bkao4hllK9dX2UKGgGR0BsIAAAAAAAaAdL4WgIR0BkbaVlf7aadX2UKGgGR0BrQAAAAAAAaAdL2mgIR0BkmLytmthedX2UKGgGR0B6IAAAAAAAaAdNogFoCEdAZJ9+98JD3XV9lChoBkdAY4AAAAAAAGgHS5xoCEdAZKIg6EJ0GXV9lChoBkdAb+AAAAAAAGgHS/9oCEdAZKXeDWbw0HV9lChoBkdAR4AAAAAAAGgHSy9oCEdAZKaHGCI1tXV9lChoBkdAcSAAAAAAAGgHTRIBaAhHQGSqt4qwyIp1fZQoaAZHQG4gAAAAAABoB0vxaAhHQGSu9jgAIY51fZQoaAZHQEeAAAAAAABoB0svaAhHQGSv32mHgxd1fZQoaAZHQHtgAAAAAABoB022AWgIR0Bkt/NzKcNIdX2UKGgGR0Bx4AAAAAAAaAdNHgFoCEdAZOKJk5IYnHV9lChoBkdAY6AAAAAAAGgHS51oCEdAZOSfmLcbi3V9lChoBkdAbQAAAAAAAGgHS+hoCEdAZOgRHPNVznV9lChoBkdAYsAAAAAAAGgHS5ZoCEdAZOor2g398HV9lChoBkdAbEAAAAAAAGgHS+JoCEdAZO1/82rGR3V9lChoBkdAbcAAAAAAAGgHS+5oCEdAZPED7qIJq3V9lChoBkdAdLAAAAAAAGgHTUsBaAhHQGT12O6unuR1fZQoaAZHQGpgAAAAAABoB0vTaAhHQGT46vq1PWR1fZQoaAZHQFoAAAAAAABoB0toaAhHQGT6nbItDlZ1fZQoaAZHQHvQAAAAAABoB029AWgIR0BlJuWWyC4CdX2UKGgGR0BxsAAAAAAAaAdNGwFoCEdAZSvsGgSOBHV9lChoBkdAcnAAAAAAAGgHTScBaAhHQGUxZVn27Ft1fZQoaAZHQHRQAAAAAABoB01FAWgIR0BlNnRsuWa+dX2UKGgGR0Bx4AAAAAAAaAdNHgFoCEdAZTq6IWP91nV9lChoBkdAcIAAAAAAAGgHTQgBaAhHQGU+gkC3gDR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BlaZhUipvQdX2UKGgGR0B58AAAAAAAaAdNnwFoCEdAZW+DSPU8WHV9lChoBkdAc/AAAAAAAGgHTT8BaAhHQGV0iT2WY4R1fZQoaAZHQHPAAAAAAABoB008AWgIR0BleREx7AtWdX2UKGgGR0B2YAAAAAAAaAdNZgFoCEdAZX7LTQVsUXV9lChoBkdAcsAAAAAAAGgHTSwBaAhHQGWDgWi1y/91fZQoaAZHQHggAAAAAABoB02CAWgIR0BlrZNwiqyXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZbWYJE6T4nV9lChoBkdAdnAAAAAAAGgHTWcBaAhHQGW66vzOHFh1fZQoaAZHQHPQAAAAAABoB009AWgIR0Blv5QemvW6dX2UKGgGR0BzwAAAAAAAaAdNPAFoCEdAZcSEmplz2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGXyj7hvR7Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bl+v3FkxyodX2UKGgGR0B0sAAAAAAAaAdNSwFoCEdAZgC0NSZSenV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGYIhI4EOiF1fZQoaAZHQGrgAAAAAABoB0vXaAhHQGYLuGKyfL91fZQoaAZHQH9AAAAAAABoB030AWgIR0BmNuUILPUsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZj5jPOY6XHV9lChoBkdAexAAAAAAAGgHTbEBaAhHQGZE+2uxKQJ1fZQoaAZHQH6QAAAAAABoB03pAWgIR0BmTTLbHp8ndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZlUNYr8R+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGaBMhgVoHt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmiaUzKs+3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZpJQ8fV7QnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGaZjXe3x4J1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmxIODrZ8KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZsxgKneiz3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGbT3okiUxF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bm26W5Yoy9dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 150,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True]",
|
60 |
+
"bounded_above": "[ True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
65 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
66 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
67 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "2",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
PPO-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb51572ecce22f764a32f63f6634fd24a1d47065c49457b6631f9a7961ee002b
|
3 |
+
size 82858
|
PPO-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e62837874074c2b202fa3f7119d5ce3c34bbcf71feaa25bf70f2cc7069c5a8b
|
3 |
+
size 41074
|
PPO-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
PPO-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
|
2 |
+
- Python: 3.9.18
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.1
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 500.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f69ebff0940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f69ebff09d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f69ebff0a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f69ebff0af0>", "_build": "<function ActorCriticPolicy._build at 0x7f69ebff0b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f69ebff0c10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f69ebff0ca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f69ebff0d30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f69ebff0dc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f69ebff0e50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f69ebff0ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f69ebff0f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f69ebf8c2c0>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 30720, "_total_timesteps": 30000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705052500862472675, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAKAsQj1wugU/eAdUvbaac76UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFyAAAAAAACMAWyUS3KMAXSUR0BjzQqur6tUdX2UKGgGR0BWgAAAAAAAaAdLWmgIR0BjzmjfvWpZdX2UKGgGR0BWAAAAAAAAaAdLWGgIR0Bjz9B0IToMdX2UKGgGR0BBAAAAAAAAaAdLImgIR0Bj0E7dSEUTdX2UKGgGR0BFgAAAAAAAaAdLK2gIR0Bj0N0Lc9GJdX2UKGgGR0BjAAAAAAAAaAdLmGgIR0Bj03ci4axYdX2UKGgGR0BXgAAAAAAAaAdLXmgIR0Bj1LmOlwcYdX2UKGgGR0BzIAAAAAAAaAdNMgFoCEdAY9lbfxc3VHV9lChoBkdAToAAAAAAAGgHSz1oCEdAY9pDziCJ43V9lChoBkdAVQAAAAAAAGgHS1RoCEdAY9t/rjYI0XV9lChoBkdASAAAAAAAAGgHSzBoCEdAY9wxQizLOnV9lChoBkdAKgAAAAAAAGgHSw1oCEdAY9xpJPIn0HV9lChoBkdAQYAAAAAAAGgHSyNoCEdAY9zoK2KEWnV9lChoBkdAXkAAAAAAAGgHS3loCEdAY96do371qXV9lChoBkdAXAAAAAAAAGgHS3BoCEdAY+BgRbr1NHV9lChoBkdAQYAAAAAAAGgHSyNoCEdAY+Da6BiCrnV9lChoBkdARoAAAAAAAGgHSy1oCEdAZAxie/YapHV9lChoBkdAX4AAAAAAAGgHS35oCEdAZA5bvgFX73V9lChoBkdAYuAAAAAAAGgHS5doCEdAZBDzKcNH6XV9lChoBkdANQAAAAAAAGgHSxVoCEdAZBFJHRTjvXV9lChoBkdAYCAAAAAAAGgHS4FoCEdAZBNYQJ5VwXV9lChoBkdASQAAAAAAAGgHSzJoCEdAZBQNoakylHV9lChoBkdAXwAAAAAAAGgHS3xoCEdAZBXPzFuNxXV9lChoBkdAPwAAAAAAAGgHSx9oCEdAZBY/8EV32XV9lChoBkdAaWAAAAAAAGgHS8toCEdAZBky0rsjV3V9lChoBkdAUMAAAAAAAGgHS0NoCEdAZBozu4PPLXV9lChoBkdAVIAAAAAAAGgHS1JoCEdAZBtkjopx3nV9lChoBkdAXIAAAAAAAGgHS3JoCEdAZB04NI9TxXV9lChoBkdAYOAAAAAAAGgHS4doCEdAZB82vStvGnV9lChoBkdAVUAAAAAAAGgHS1VoCEdAZCBljEvTPXV9lChoBkdAYwAAAAAAAGgHS5hoCEdAZCKgIyCWeHV9lChoBkdAXgAAAAAAAGgHS3hoCEdAZCRXVbzK93V9lChoBkdAYcAAAAAAAGgHS45oCEdAZCZYJ3PiUHV9lChoBkdAV0AAAAAAAGgHS11oCEdAZCehQFcIJXV9lChoBkdAKAAAAAAAAGgHSwxoCEdAZCfP8AJb+3V9lChoBkdAQwAAAAAAAGgHSyZoCEdAZChTLns9jnV9lChoBkdAcEAAAAAAAGgHTQQBaAhHQGRTZ9uxbB51fZQoaAZHQFoAAAAAAABoB0toaAhHQGRU6JIlMRJ1fZQoaAZHQGEAAAAAAABoB0uIaAhHQGRXM7dSEUV1fZQoaAZHQGPgAAAAAABoB0ufaAhHQGRaAZ0jkdV1fZQoaAZHQGggAAAAAABoB0vBaAhHQGRc56D5CWx1fZQoaAZHQHMwAAAAAABoB00zAWgIR0BkYWPkq+ajdX2UKGgGR0BfQAAAAAAAaAdLfWgIR0BkYzNnoPkJdX2UKGgGR0BlYAAAAAAAaAdLq2gIR0BkZcY64lQedX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BkZ/Kp1ie/dX2UKGgGR0BlAAAAAAAAaAdLqGgIR0Bkao4hllK9dX2UKGgGR0BsIAAAAAAAaAdL4WgIR0BkbaVlf7aadX2UKGgGR0BrQAAAAAAAaAdL2mgIR0BkmLytmthedX2UKGgGR0B6IAAAAAAAaAdNogFoCEdAZJ9+98JD3XV9lChoBkdAY4AAAAAAAGgHS5xoCEdAZKIg6EJ0GXV9lChoBkdAb+AAAAAAAGgHS/9oCEdAZKXeDWbw0HV9lChoBkdAR4AAAAAAAGgHSy9oCEdAZKaHGCI1tXV9lChoBkdAcSAAAAAAAGgHTRIBaAhHQGSqt4qwyIp1fZQoaAZHQG4gAAAAAABoB0vxaAhHQGSu9jgAIY51fZQoaAZHQEeAAAAAAABoB0svaAhHQGSv32mHgxd1fZQoaAZHQHtgAAAAAABoB022AWgIR0Bkt/NzKcNIdX2UKGgGR0Bx4AAAAAAAaAdNHgFoCEdAZOKJk5IYnHV9lChoBkdAY6AAAAAAAGgHS51oCEdAZOSfmLcbi3V9lChoBkdAbQAAAAAAAGgHS+hoCEdAZOgRHPNVznV9lChoBkdAYsAAAAAAAGgHS5ZoCEdAZOor2g398HV9lChoBkdAbEAAAAAAAGgHS+JoCEdAZO1/82rGR3V9lChoBkdAbcAAAAAAAGgHS+5oCEdAZPED7qIJq3V9lChoBkdAdLAAAAAAAGgHTUsBaAhHQGT12O6unuR1fZQoaAZHQGpgAAAAAABoB0vTaAhHQGT46vq1PWR1fZQoaAZHQFoAAAAAAABoB0toaAhHQGT6nbItDlZ1fZQoaAZHQHvQAAAAAABoB029AWgIR0BlJuWWyC4CdX2UKGgGR0BxsAAAAAAAaAdNGwFoCEdAZSvsGgSOBHV9lChoBkdAcnAAAAAAAGgHTScBaAhHQGUxZVn27Ft1fZQoaAZHQHRQAAAAAABoB01FAWgIR0BlNnRsuWa+dX2UKGgGR0Bx4AAAAAAAaAdNHgFoCEdAZTq6IWP91nV9lChoBkdAcIAAAAAAAGgHTQgBaAhHQGU+gkC3gDR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BlaZhUipvQdX2UKGgGR0B58AAAAAAAaAdNnwFoCEdAZW+DSPU8WHV9lChoBkdAc/AAAAAAAGgHTT8BaAhHQGV0iT2WY4R1fZQoaAZHQHPAAAAAAABoB008AWgIR0BleREx7AtWdX2UKGgGR0B2YAAAAAAAaAdNZgFoCEdAZX7LTQVsUXV9lChoBkdAcsAAAAAAAGgHTSwBaAhHQGWDgWi1y/91fZQoaAZHQHggAAAAAABoB02CAWgIR0BlrZNwiqyXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZbWYJE6T4nV9lChoBkdAdnAAAAAAAGgHTWcBaAhHQGW66vzOHFh1fZQoaAZHQHPQAAAAAABoB009AWgIR0Blv5QemvW6dX2UKGgGR0BzwAAAAAAAaAdNPAFoCEdAZcSEmplz2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGXyj7hvR7Z1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bl+v3FkxyodX2UKGgGR0B0sAAAAAAAaAdNSwFoCEdAZgC0NSZSenV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGYIhI4EOiF1fZQoaAZHQGrgAAAAAABoB0vXaAhHQGYLuGKyfL91fZQoaAZHQH9AAAAAAABoB030AWgIR0BmNuUILPUsdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZj5jPOY6XHV9lChoBkdAexAAAAAAAGgHTbEBaAhHQGZE+2uxKQJ1fZQoaAZHQH6QAAAAAABoB03pAWgIR0BmTTLbHp8ndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZlUNYr8R+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGaBMhgVoHt1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmiaUzKs+3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZpJQ8fV7QnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGaZjXe3x4J1fZQoaAZHQH9AAAAAAABoB030AWgIR0BmxIODrZ8KdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAZsxgKneiz3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQGbT3okiUxF1fZQoaAZHQH9AAAAAAABoB030AWgIR0Bm26W5Yoy9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (57.8 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-12T15:24:22.311349"}
|