dqn-cart-pole-sb3 / config.json
nsanghi's picture
Push to Hub
ac4b638 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x789b64913d00>", "_build": "<function DQNPolicy._build at 0x789b64913d90>", "make_q_net": "<function DQNPolicy.make_q_net at 0x789b64913e20>", "forward": "<function DQNPolicy.forward at 0x789b64913eb0>", "_predict": "<function DQNPolicy._predict at 0x789b64913f40>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x789b64938040>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x789b649380d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789b6492ee80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710223609414184131, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAOvOGT6PeQg/q9wLuoEj1b6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAO7jCj5aeTo/yPpgPDOYNr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 4494, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGDgAAAAAACMAWyUS4eMAXSUR0BSIghW5paidX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BSJjCk43m3dX2UKGgGR0BjQAAAAAAAaAdLmmgIR0BSM6BEroW6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0BSN384xUNsdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0BSO6yrxRVIdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSPFrAP/aQdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0BSPP2f029+dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSPlFhG6PKdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSPyN4qwyJdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BSQAAp8WsSdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSQNbs4T9LdX2UKGgGR0BiQAAAAAAAaAdLkmgIR0BSTbNB4UvgdX2UKGgGR0BeQAAAAAAAaAdLeWgIR0BSWAHZ9NN8dX2UKGgGR0BhgAAAAAAAaAdLjGgIR0BSZVA3T/hmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0BSaZpvgm7bdX2UKGgGR0Bn4AAAAAAAaAdLv2gIR0BSea/h2nsLdX2UKGgGR0BiYAAAAAAAaAdLk2gIR0BShkeEIw/QdX2UKGgGR0BiIAAAAAAAaAdLkWgIR0BSktmxt52RdX2UKGgGR0Bl4AAAAAAAaAdLr2gIR0BSoZmNBF/hdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BSpHWz4UN8dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BSpXBLwnYydX2UKGgGR0BDAAAAAAAAaAdLJmgIR0BSqCLEUCaJdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BSq5mdy1eCdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSrJ/smfGudX2UKGgGR0AiAAAAAAAAaAdLCWgIR0BSrdNN8E3bdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0BSrnymQ8wIdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BSsNbPhQ3xdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BSsni704BFdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BSs/FJg9eQdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BStYdIXj2jdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BStltwaR6odX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BSuWgezUqhdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSuhkAggX/dX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BSuu9alk6LdX2UKGgGR0BGAAAAAAAAaAdLLGgIR0BSvuSntOVPdX2UKGgGR0BgAAAAAAAAaAdLgGgIR0BSyX4j8k2QdX2UKGgGR0BMAAAAAAAAaAdLOGgIR0BSzpcxCY1HdX2UKGgGR0BkIAAAAAAAaAdLoWgIR0BS3k7jkuHvdX2UKGgGR0BdQAAAAAAAaAdLdWgIR0BS66LGaQV9dX2UKGgGR0BfwAAAAAAAaAdLf2gIR0BS+2ZmZmZmdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BS/zBqKxcFdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BTADDTBqKxdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BTAQNb1RLsdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BTBFcUuctodX2UKGgGR0BjIAAAAAAAaAdLmWgIR0BTFX0K7ZnMdX2UKGgGR0BioAAAAAAAaAdLlWgIR0BTJVm8M/hVdX2UKGgGR0BhIAAAAAAAaAdLiWgIR0BTNfQv6CUYdX2UKGgGR0BkgAAAAAAAaAdLpGgIR0BTSVxffGdadX2UKGgGR0BZgAAAAAAAaAdLZmgIR0BTVbytmthedX2UKGgGR0BdQAAAAAAAaAdLdWgIR0BTZCF49ovjdX2UKGgGR0BlQAAAAAAAaAdLqmgIR0BTcspsoDxLdX2UKGgGR0BbwAAAAAAAaAdLb2gIR0BTfJydWhh6dX2UKGgGR0BxIAAAAAAAaAdNEgFoCEdAU5MFGG21D3V9lChoBkdAZqAAAAAAAGgHS7VoCEdAU6Mclw97nnV9lChoBkdAboAAAAAAAGgHS/RoCEdAU7iW5Yoy9HV9lChoBkdAaMAAAAAAAGgHS8ZoCEdAU8jTLGJemnV9lChoBkdAZoAAAAAAAGgHS7RoCEdAU9mGEf1YhnV9lChoBkdAbcAAAAAAAGgHS+5oCEdAU+539rGipXV9lChoBkdAbOAAAAAAAGgHS+doCEdAVAM9X9zfanV9lChoBkdAaoAAAAAAAGgHS9RoCEdAVBXhvR7Z4HV9lChoBkdAbGAAAAAAAGgHS+NoCEdAVCnoMa0hNnV9lChoBkdAY4AAAAAAAGgHS5xoCEdAVDc9vCMxXXV9lChoBkdAcBAAAAAAAGgHTQEBaAhHQFROAKv3ai91fZQoaAZHQGUAAAAAAABoB0uoaAhHQFRcCe2/i5x1fZQoaAZHQGTgAAAAAABoB0unaAhHQFRqY287IT51fZQoaAZHQG4AAAAAAABoB0vwaAhHQFR/DHOryUd1fZQoaAZHQGkgAAAAAABoB0vJaAhHQFSQQrtmcvx1fZQoaAZHQGSgAAAAAABoB0ulaAhHQFSeANXo1UF1fZQoaAZHQG7gAAAAAABoB0v3aAhHQFSzah6By0d1fZQoaAZHQG0gAAAAAABoB0vpaAhHQFTHqgAZKnN1fZQoaAZHQGQgAAAAAABoB0uhaAhHQFTWGz8gpz91fZQoaAZHQGWgAAAAAABoB0utaAhHQFTk5vcafjF1fZQoaAZHQGuAAAAAAABoB0vcaAhHQFT3xcmjTKF1fZQoaAZHQG2gAAAAAABoB0vtaAhHQFUN0PpY9xJ1fZQoaAZHQGbAAAAAAABoB0u2aAhHQFUdXhfjS5R1fZQoaAZHQGngAAAAAABoB0vPaAhHQFUvs9jgAIZ1fZQoaAZHQG2gAAAAAABoB0vtaAhHQFVF+R5kbxV1fZQoaAZHQGfAAAAAAABoB0u+aAhHQFVXPCEYfnx1fZQoaAZHQGbgAAAAAABoB0u3aAhHQFVnHObAk9l1fZQoaAZHQG3gAAAAAABoB0vvaAhHQFV8bDMvAXV1fZQoaAZHQGZAAAAAAABoB0uyaAhHQFWMrWiDdxh1fZQoaAZHQHFAAAAAAABoB00UAWgIR0BVpKgVXV9XdX2UKGgGR0BmoAAAAAAAaAdLtWgIR0BVtJB9kSVXdX2UKGgGR0Bm4AAAAAAAaAdLt2gIR0BVxBJI1+AmdX2UKGgGR0BlAAAAAAAAaAdLqGgIR0BV0pvHcUM5dX2UKGgGR0BoIAAAAAAAaAdLwWgIR0BV40aIeo1ldX2UKGgGR0BqIAAAAAAAaAdL0WgIR0BV+rt3OfNBdX2UKGgGR0BpIAAAAAAAaAdLyWgIR0BWEIcNpdrwdX2UKGgGR0BowAAAAAAAaAdLxmgIR0BWJTcIqsltdX2UKGgGR0BloAAAAAAAaAdLrWgIR0BWOIVEd/8VdX2UKGgGR0BwIAAAAAAAaAdNAgFoCEdAVlkA+6iCa3V9lChoBkdAZ8AAAAAAAGgHS75oCEdAVnBoysS00HV9lChoBkdAa8AAAAAAAGgHS95oCEdAVoPjPv8ZUHV9lChoBkdAaKAAAAAAAGgHS8VoCEdAVpUFB6a9b3V9lChoBkdAZyAAAAAAAGgHS7loCEdAVqUxXXAdn3V9lChoBkdAZkAAAAAAAGgHS7JoCEdAVrP1Fpfx+nV9lChoBkdAYQAAAAAAAGgHS4hoCEdAVr9pFkQPJHV9lChoBkdAZwAAAAAAAGgHS7hoCEdAVs8u7HyVfXV9lChoBkdAZIAAAAAAAGgHS6RoCEdAVt1Nh3JPqXV9lChoBkdAaIAAAAAAAGgHS8RoCEdAVu6kuYhManVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQHcF4LuDDpVM3To9flXgsbowDaW5jlIoRScpMOAx56QTzR2GYFqW/xwB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKR+XxPnVidWIu", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x789b64910160>", "add": "<function ReplayBuffer.add at 0x789b649101f0>", "sample": "<function ReplayBuffer.sample at 0x789b64910280>", "_get_samples": "<function ReplayBuffer._get_samples at 0x789b64910310>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x789b649103a0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789b64908b40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGDAEEARgClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxJL3Vzci9sb2NhbC9saWIvcHl0aG9uMy4xMC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgdKVKUaB0pUpSHlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC91jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoN0c/uZmZmZmZmoWUUpRoN0c/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}