Initial commit
Browse files- .gitattributes +1 -0
- README.md +54 -7
- args.yml +81 -0
- config.yml +27 -0
- dqn-LunarLander-v2.zip +2 -2
- dqn-LunarLander-v2/data +60 -55
- dqn-LunarLander-v2/policy.optimizer.pth +2 -2
- dqn-LunarLander-v2/policy.pth +2 -2
- env_kwargs.yml +1 -0
- replay.mp4 +0 -0
- results.json +1 -1
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,22 +16,69 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
# **DQN** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```python
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
```
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 184.85 +/- 106.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
# **DQN** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga nsanghi
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('buffer_size', 50000),
|
67 |
+
('exploration_final_eps', 0.1),
|
68 |
+
('exploration_fraction', 0.12),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('gradient_steps', -1),
|
71 |
+
('learning_rate', 0.00063),
|
72 |
+
('learning_starts', 0),
|
73 |
+
('n_timesteps', 100000.0),
|
74 |
+
('policy', 'MlpPolicy'),
|
75 |
+
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
76 |
+
('target_update_interval', 250),
|
77 |
+
('train_freq', 4),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
80 |
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- dqn
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- LunarLander-v2
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- 400
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- 100000
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- true
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1726845707
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - buffer_size
|
5 |
+
- 50000
|
6 |
+
- - exploration_final_eps
|
7 |
+
- 0.1
|
8 |
+
- - exploration_fraction
|
9 |
+
- 0.12
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - gradient_steps
|
13 |
+
- -1
|
14 |
+
- - learning_rate
|
15 |
+
- 0.00063
|
16 |
+
- - learning_starts
|
17 |
+
- 0
|
18 |
+
- - n_timesteps
|
19 |
+
- 100000.0
|
20 |
+
- - policy
|
21 |
+
- MlpPolicy
|
22 |
+
- - policy_kwargs
|
23 |
+
- dict(net_arch=[256, 256])
|
24 |
+
- - target_update_interval
|
25 |
+
- 250
|
26 |
+
- - train_freq
|
27 |
+
- 4
|
dqn-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfdac5700c8cb088fd8d75b3cce587e30609f986dcc005dc741f8bbffb1678bc
|
3 |
+
size 1132221
|
dqn-LunarLander-v2/data
CHANGED
@@ -5,84 +5,57 @@
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
-
"__init__": "<function DQNPolicy.__init__ at
|
9 |
-
"_build": "<function DQNPolicy._build at
|
10 |
-
"make_q_net": "<function DQNPolicy.make_q_net at
|
11 |
-
"forward": "<function DQNPolicy.forward at
|
12 |
-
"_predict": "<function DQNPolicy._predict at
|
13 |
-
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at
|
14 |
-
"set_training_mode": "<function DQNPolicy.set_training_mode at
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
-
"_abc_impl": "<_abc._abc_data object at
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
-
"policy_kwargs": {
|
|
|
|
|
|
|
|
|
|
|
20 |
"num_timesteps": 100000,
|
21 |
"_total_timesteps": 100000,
|
22 |
"_num_timesteps_at_start": 0,
|
23 |
-
"seed":
|
24 |
"action_noise": null,
|
25 |
-
"start_time":
|
26 |
-
"learning_rate":
|
27 |
-
|
28 |
-
|
29 |
-
":type:": "<class 'numpy.ndarray'>",
|
30 |
-
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBwcb3jUKU/MoRBvSUv8L2zXaG9rnl9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
31 |
},
|
|
|
|
|
32 |
"_last_episode_starts": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_original_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
-
"_episode_num":
|
41 |
"use_sde": false,
|
42 |
"sde_sample_freq": -1,
|
43 |
"_current_progress_remaining": 0.0,
|
44 |
"_stats_window_size": 100,
|
45 |
"ep_info_buffer": {
|
46 |
":type:": "<class 'collections.deque'>",
|
47 |
-
":serialized:": "
|
48 |
},
|
49 |
"ep_success_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
},
|
53 |
-
"_n_updates":
|
54 |
-
"buffer_size": 1000000,
|
55 |
-
"batch_size": 32,
|
56 |
-
"learning_starts": 50000,
|
57 |
-
"tau": 1.0,
|
58 |
-
"gamma": 0.99,
|
59 |
-
"gradient_steps": 1,
|
60 |
-
"optimize_memory_usage": false,
|
61 |
-
"replay_buffer_class": {
|
62 |
-
":type:": "<class 'abc.ABCMeta'>",
|
63 |
-
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
64 |
-
"__module__": "stable_baselines3.common.buffers",
|
65 |
-
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
66 |
-
"__init__": "<function ReplayBuffer.__init__ at 0x7f8bd05e8ee0>",
|
67 |
-
"add": "<function ReplayBuffer.add at 0x7f8bd05e8f70>",
|
68 |
-
"sample": "<function ReplayBuffer.sample at 0x7f8bd05e9000>",
|
69 |
-
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f8bd05e9090>",
|
70 |
-
"__abstractmethods__": "frozenset()",
|
71 |
-
"_abc_impl": "<_abc._abc_data object at 0x7f8bd05e5d80>"
|
72 |
-
},
|
73 |
-
"replay_buffer_kwargs": {},
|
74 |
-
"train_freq": {
|
75 |
-
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
76 |
-
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
77 |
-
},
|
78 |
-
"use_sde_at_warmup": false,
|
79 |
-
"exploration_initial_eps": 1.0,
|
80 |
-
"exploration_final_eps": 0.1,
|
81 |
-
"exploration_fraction": 0.1,
|
82 |
-
"target_update_interval": 250,
|
83 |
-
"_n_calls": 100000,
|
84 |
-
"max_grad_norm": 10,
|
85 |
-
"exploration_rate": 0.1,
|
86 |
"observation_space": {
|
87 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
88 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -100,7 +73,7 @@
|
|
100 |
},
|
101 |
"action_space": {
|
102 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
103 |
-
":serialized:": "
|
104 |
"n": "4",
|
105 |
"start": "0",
|
106 |
"_shape": [],
|
@@ -108,14 +81,46 @@
|
|
108 |
"_np_random": "Generator(PCG64)"
|
109 |
},
|
110 |
"n_envs": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
"lr_schedule": {
|
112 |
":type:": "<class 'function'>",
|
113 |
-
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
114 |
},
|
115 |
"batch_norm_stats": [],
|
116 |
"batch_norm_stats_target": [],
|
117 |
"exploration_schedule": {
|
118 |
":type:": "<class 'function'>",
|
119 |
-
":serialized:": "gAWVmQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGMvaG9tZS9uc2FuZ2hpL21pbmljb25kYTMvZW52cy9hcHJlc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYMAQQBGAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9uc2FuZ2hpL21pbmljb25kYTMvZW52cy9hcHJlc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHSlSlGgdKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+
|
120 |
}
|
121 |
}
|
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fc6d8cf52d0>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7fc6d8cf5360>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fc6d8cf53f0>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7fc6d8cf5480>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7fc6d8cf5510>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fc6d8cf55a0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fc6d8cf5630>",
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc6d8ceeb00>"
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
"num_timesteps": 100000,
|
26 |
"_total_timesteps": 100000,
|
27 |
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": 0,
|
29 |
"action_noise": null,
|
30 |
+
"start_time": 1689226241621930794,
|
31 |
+
"learning_rate": {
|
32 |
+
":type:": "<class 'function'>",
|
33 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
|
|
34 |
},
|
35 |
+
"tensorboard_log": null,
|
36 |
+
"_last_obs": null,
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE2kA74UiPq6d6W0OXd9bTbpJNA7AMDRuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
44 |
},
|
45 |
+
"_episode_num": 222,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
"_current_progress_remaining": 0.0,
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwC5ugi/wiJSMAWyUTegDjAF0lEdAc/0EyLyc1HV9lChoBkfAP40DEFW4mWgHTegDaAhHQHRimnTAnD11fZQoaAZHQEBE5WBBiTdoB03oA2gIR0B0wtpWV/tqdX2UKGgGR0BwWkqhDgIhaAdNWgJoCEdAdRc5AhStNnV9lChoBkfAPRQZKnNxEWgHTegDaAhHQHWFU/0NBnl1fZQoaAZHQGlL5mI0qH5oB021AWgIR0B1tjmig00ndX2UKGgGR0Brcz/2kBS2aAdNBQNoCEdAdf934bjtHHV9lChoBkdAPyGr4nF5wGgHTegDaAhHQHZjrRWtEG91fZQoaAZHQG4F6BAfMfRoB01GAWgIR0B2g1KnNxEOdX2UKGgGR0Bwrf7BO58SaAdNSgNoCEdAduADBMzuW3V9lChoBkdAbSgRmK64D2gHS+xoCEdAdvsFkQPI4nV9lChoBkdAcrvRXwLE1mgHS+FoCEdAdxEpudf9gnV9lChoBkdASGOus90RvmgHS7VoCEdAdyZ9B8hLXnV9lChoBkdAXbzJnxri2mgHTegDaAhHQHeT2ZNO/L11fZQoaAZHQHCD05yU9p1oB0vyaAhHQHesE0WM0gt1fZQoaAZHQGQhWFvhqCZoB03oA2gIR0B4DjVmSQo1dX2UKGgGR0Bl2qWeHzpYaAdN6ANoCEdAeHVJgb6xgXV9lChoBkdAciNyP+4smWgHTXgDaAhHQHjbmxMWXTp1fZQoaAZHQG/euJUHY6JoB00iAmgIR0B5Hm1XvH94dX2UKGgGR0Bdszghr30xaAdN6ANoCEdAeYJg/TsponV9lChoBkdAcG5aHsTnJWgHTcABaAhHQHms54B3iaR1fZQoaAZHQEU0kLQXyiFoB0tyaAhHQHm27Tc6/7B1fZQoaAZHQHAP91+y7f5oB004AWgIR0B513tWuHN5dX2UKGgGR0ByUSM6zVtoaAdNcgFoCEdAegJQqZtvXXV9lChoBkdAcLiVpKzzE2gHTb4BaAhHQHo1vMOf/WF1fZQoaAZHQHLXkOy3TeBoB007AWgIR0B6W0Hu7YkFdX2UKGgGR0BrZxQDV6NVaAdNvQFoCEdAeo0No8IRiHV9lChoBkdAIu5YxL0z02gHS2toCEdAepkRbKRuCXV9lChoBkdAb/071ZkkKWgHTbUBaAhHQHrOuXE61b91fZQoaAZHQHDbJqmCROloB0uYaAhHQHre7Tx5LRN1fZQoaAZHQHBxHM+u/1xoB03TAmgIR0B7NiEeyRjjdX2UKGgGR0Bxpw6BAfMfaAdNigFoCEdAe2i+pfhMrXV9lChoBkdAb+OVbA1vVGgHTSIDaAhHQHvOiEg4ffZ1fZQoaAZHQGPsIJRfnfVoB03oA2gIR0B8Tb1anrIHdX2UKGgGR0Bx2FH4GlhxaAdN9gFoCEdAfI3LUkOZs3V9lChoBkdAPKcbNr0rb2gHS51oCEdAfKEUd7v5QHV9lChoBkdAcBQji4rjHWgHTX0BaAhHQHzNC/sVtXR1fZQoaAZHQEt4DgZTAFhoB0u7aAhHQHzhgQcxTKl1fZQoaAZHQHHlrhm5DqpoB0vYaAhHQHz3dUKiPAB1fZQoaAZHQEepJOFg2IhoB0u9aAhHQH0cve1rqMZ1fZQoaAZHQHEadITXarZoB026A2gIR0B9jHscABDHdX2UKGgGR0BgfiAQQL/kaAdN6ANoCEdAff+dGy5ZsHV9lChoBkdAa0bTZxrBTGgHTX8CaAhHQH5EOe8PFvR1fZQoaAZHQGNc7lRxcVxoB03oA2gIR0B+rVLf1pTNdX2UKGgGR0BvclTefqX4aAdNUwFoCEdAftar7O3UhHV9lChoBkdAcQUi8nNPg2gHS91oCEdAfu2HYpUgjnV9lChoBkdANdvxUedTYWgHS3loCEdAfvqgezUqhHV9lChoBkdAYD8W+GoJiWgHTegDaAhHQH9qRK+SKWN1fZQoaAZHQEAtwPRRdhRoB0uHaAhHQH93URODaoN1fZQoaAZHQGS46ZQYUFloB03oA2gIR0B/5+9PDYRNdX2UKGgGR0Bwv/4IrvsraAdN8AFoCEdAgA6JNbkfcXV9lChoBkdAPVE8FINEw2gHS9RoCEdAgBpgGjbi63V9lChoBkdAbyfU1hsqKGgHTXgBaAhHQIAvM7r9l3B1fZQoaAZHQHJV6+i8FpxoB0vGaAhHQIA6kbiqABl1fZQoaAZHwEk/WQwK0D5oB0uPaAhHQIBCt3fQ8fV1fZQoaAZHQDJzrAxi5NJoB0udaAhHQIBMpY1YQrd1fZQoaAZHQHH8HTRYzSFoB0viaAhHQIBZrKDCgsd1fZQoaAZHQHMve1KGtZFoB01JAWgIR0CAa4tnwob5dX2UKGgGR0Bt11cIJJGwaAdNqAFoCEdAgIMIis4kvHV9lChoBkdAckSuqFRHgGgHTSYBaAhHQICTgYUFjd51fZQoaAZHQHCwxY3eenRoB00nAWgIR0CAo5SMLncMdX2UKGgGR0A00ZHNHH3laAdLZmgIR0CAqZGQSzw+dX2UKGgGR8Bb6Ea6z3RHaAdLeWgIR0CAsLbeMyaedX2UKGgGR0Bz8/3PAwfyaAdN3QFoCEdAgMwJr1uivnV9lChoBkdAcZkWxQizLWgHTQEBaAhHQIDal4u9OAR1fZQoaAZHwAgS88La24NoB0ulaAhHQIDjHiLl3hZ1fZQoaAZHwFL+zAeq7yxoB0uGaAhHQIDpqLKmsNl1fZQoaAZHwGnOLzPKMehoB00BA2gIR0CBEZVAiV0LdX2UKGgGR0Bw3Yflp48maAdLt2gIR0CBG/eb/ffodX2UKGgGR0BxWh+3H7xeaAdN0gFoCEdAgTX+dTYNAnV9lChoBkdActC6FdszmGgHTW8CaAhHQIFYozFdcB51fZQoaAZHQHBCn6yjYZloB00PAmgIR0CBdzXU6PsBdX2UKGgGR0BxAx3yI55raAdNWAFoCEdAgYoTsIE8rHV9lChoBkdAJagVoHs1K2gHS9loCEdAgZV0sFt8/nV9lChoBkdAcBivG6wt8WgHTW8CaAhHQIG3Ea6z3RJ1fZQoaAZHQE8Vysjmjj9oB0upaAhHQIHAOF10T111fZQoaAZHQHHZzHwPRRdoB0vyaAhHQIHNgfOlfqp1fZQoaAZHQG6+gC4jKPpoB0u4aAhHQIHXtkDp1Rt1fZQoaAZHQEaUrsByS3doB0uDaAhHQIHec+s5n151fZQoaAZHQEsfLwF1SwZoB0uNaAhHQIHmghllK9R1fZQoaAZHQDaQ+yJKraNoB0uraAhHQIHxjVBlcyF1fZQoaAZHQGDqfX5FgD1oB03oA2gIR0CCJlgkTpPidX2UKGgGR0A75hg3Lmp3aAdLXWgIR0CCKwFuejEfdX2UKGgGR0BkptOymhugaAdN6ANoCEdAgmNC/wiJO3V9lChoBkdAbpDI4EOiFmgHTVoBaAhHQIJ1uPPszEd1fZQoaAZHQG6RareZXuFoB00FAmgIR0CClCLQXyiFdX2UKGgGR0BxJHr4WUKRaAdNrwFoCEdAgqynbypaR3V9lChoBkdAcG1vjOs1bmgHTcEBaAhHQILEVdE9dNZ1fZQoaAZHQELG4ku6ErZoB0t1aAhHQILJ7MHKOkt1fZQoaAZHQG2bRPGhmGxoB01/AmgIR0CC6wsFMZgpdX2UKGgGR0BHfGCiAUcoaAdLe2gIR0CC8t4ptrKvdX2UKGgGR0BztE7+1jRVaAdNkwFoCEdAgwtk1dgOSXV9lChoBkdAcRTTlT3qRmgHTbYDaAhHQIM+R7w8W9F1fZQoaAZHQEbDRfnfVI9oB0uFaAhHQINFpQvYe1d1fZQoaAZHQHNUTEehf0FoB0vfaAhHQINRC/CZWq91fZQoaAZHQHG8fCuU2UBoB02+AWgIR0CDalhiLEUCdX2UKGgGR0BwdLhky1u0aAdN2QFoCEdAg4T+n62v0XV9lChoBkdAcJUtD2Jzk2gHTYMBaAhHQIOal2TxG2F1fZQoaAZHQG2VDpkf9xZoB013AWgIR0CDrysI3R5UdX2UKGgGR0BxaYM9bHIZaAdN5QNoCEdAg+YrFn7HhnVlLg=="
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
+
"_n_updates": 100000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
73 |
},
|
74 |
"action_space": {
|
75 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
+
":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
77 |
"n": "4",
|
78 |
"start": "0",
|
79 |
"_shape": [],
|
|
|
81 |
"_np_random": "Generator(PCG64)"
|
82 |
},
|
83 |
"n_envs": 1,
|
84 |
+
"buffer_size": 1,
|
85 |
+
"batch_size": 128,
|
86 |
+
"learning_starts": 0,
|
87 |
+
"tau": 1.0,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gradient_steps": -1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "stable_baselines3.common.buffers",
|
95 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fc6d8cd1900>",
|
97 |
+
"add": "<function ReplayBuffer.add at 0x7fc6d8cd1990>",
|
98 |
+
"sample": "<function ReplayBuffer.sample at 0x7fc6d8cd1a20>",
|
99 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fc6d8cd1ab0>",
|
100 |
+
"__abstractmethods__": "frozenset()",
|
101 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc6d8c33a80>"
|
102 |
+
},
|
103 |
+
"replay_buffer_kwargs": {},
|
104 |
+
"train_freq": {
|
105 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
106 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
107 |
+
},
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.1,
|
111 |
+
"exploration_fraction": 0.12,
|
112 |
+
"target_update_interval": 250,
|
113 |
+
"_n_calls": 100000,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.1,
|
116 |
"lr_schedule": {
|
117 |
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYy9ob21lL25zYW5naGkvbWluaWNvbmRhMy9lbnZzL2FwcmVzcy9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RKTSsr/bTYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
119 |
},
|
120 |
"batch_norm_stats": [],
|
121 |
"batch_norm_stats_target": [],
|
122 |
"exploration_schedule": {
|
123 |
":type:": "<class 'function'>",
|
124 |
+
":serialized:": "gAWVmQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGMvaG9tZS9uc2FuZ2hpL21pbmljb25kYTMvZW52cy9hcHJlc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtxQwYMAQQBGAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9uc2FuZ2hpL21pbmljb25kYTMvZW52cy9hcHJlc3MvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHSlSlGgdKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCN9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgvdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7mZmZmZmZqFlFKUaDdHP764UeuFHriFlFKUaDdHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
125 |
}
|
126 |
}
|
dqn-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c11d80a76d092f0643ef836526fc2c64cf7152d0d25388c724b09ad0af8144e2
|
3 |
+
size 557807
|
dqn-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ff395ed24820c27ec3278505cce70c072d06ce0eb7461ce77518eb7c209d3e7
|
3 |
+
size 556929
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 184.85006360000003, "std_reward": 106.23244927226477, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-13T11:49:09.551113"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:074dfef77b610b76d89bda050ba25179d6903894d81006b42200559835aa19bd
|
3 |
+
size 7273
|