Upload tex_poisoning.py
Browse files- tex_poisoning.py +835 -0
tex_poisoning.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[27]:
|
5 |
+
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
get_ipython().run_line_magic('matplotlib', 'inline')
|
10 |
+
import seaborn as sns
|
11 |
+
sns.set(style="whitegrid")
|
12 |
+
import os
|
13 |
+
import glob as gb
|
14 |
+
import cv2
|
15 |
+
import tensorflow as tf
|
16 |
+
import keras
|
17 |
+
import random
|
18 |
+
from tensorflow.keras import layers, models
|
19 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import matplotlib.image as mpimg
|
22 |
+
from tensorflow.keras.models import Sequential
|
23 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten ,Dropout ,Input , BatchNormalization ,GlobalAveragePooling2D
|
24 |
+
from tensorflow.keras.utils import to_categorical
|
25 |
+
from keras.optimizers import Adam
|
26 |
+
from PIL import Image
|
27 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
28 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
29 |
+
from sklearn.metrics import classification_report, confusion_matrix , accuracy_score , ConfusionMatrixDisplay
|
30 |
+
from tensorflow.keras.metrics import Precision , Recall
|
31 |
+
from keras.metrics import Precision, Recall
|
32 |
+
import struct
|
33 |
+
from array import array
|
34 |
+
from os.path import join
|
35 |
+
from keras.models import load_model
|
36 |
+
from skimage.exposure import rescale_intensity
|
37 |
+
from sklearn.preprocessing import OneHotEncoder
|
38 |
+
from keras.callbacks import EarlyStopping, ReduceLROnPlateau ,LearningRateScheduler
|
39 |
+
from sklearn.preprocessing import LabelEncoder
|
40 |
+
from sklearn.model_selection import train_test_split
|
41 |
+
from PIL import Image
|
42 |
+
|
43 |
+
|
44 |
+
# In[2]:
|
45 |
+
|
46 |
+
|
47 |
+
from keras.datasets import cifar100
|
48 |
+
|
49 |
+
|
50 |
+
# In[3]:
|
51 |
+
|
52 |
+
|
53 |
+
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
|
54 |
+
|
55 |
+
|
56 |
+
# In[4]:
|
57 |
+
|
58 |
+
|
59 |
+
np.save('x_train.npy', x_train)
|
60 |
+
np.save('y_train.npy', y_train)
|
61 |
+
np.save('x_test.npy', x_test)
|
62 |
+
np.save('y_test.npy', y_test)
|
63 |
+
|
64 |
+
|
65 |
+
# In[5]:
|
66 |
+
|
67 |
+
|
68 |
+
print(f"x_train shape: {x_train.shape}")
|
69 |
+
print(f"y_train shape: {y_train.shape}")
|
70 |
+
print(f"x_test shape: {x_test.shape}")
|
71 |
+
print(f"y_test shape: {y_test.shape}")
|
72 |
+
|
73 |
+
|
74 |
+
# In[6]:
|
75 |
+
|
76 |
+
|
77 |
+
def preprocess_data(x, y):
|
78 |
+
x = tf.cast(x, tf.float32) / 255.0
|
79 |
+
return x, y
|
80 |
+
|
81 |
+
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar100.load_data()
|
82 |
+
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
|
83 |
+
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
|
84 |
+
|
85 |
+
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train_encoded))
|
86 |
+
|
87 |
+
train_dataset = train_dataset.map(preprocess_data)
|
88 |
+
|
89 |
+
batch_size = 64
|
90 |
+
train_dataset = train_dataset.shuffle(buffer_size=10000).batch(batch_size).prefetch(tf.data.AUTOTUNE)
|
91 |
+
|
92 |
+
for batch in train_dataset.take(1):
|
93 |
+
images, labels = batch
|
94 |
+
print(images.shape, labels.shape)
|
95 |
+
|
96 |
+
|
97 |
+
# In[7]:
|
98 |
+
|
99 |
+
|
100 |
+
y_train_encoded = to_categorical(y_train, num_classes=100)
|
101 |
+
y_test_encoded = to_categorical(y_test, num_classes=100)
|
102 |
+
|
103 |
+
|
104 |
+
# In[34]:
|
105 |
+
|
106 |
+
|
107 |
+
import numpy as np
|
108 |
+
import matplotlib.pyplot as plt
|
109 |
+
from tensorflow.keras.datasets import cifar100
|
110 |
+
import tensorflow as tf
|
111 |
+
from PIL import Image
|
112 |
+
import cv2
|
113 |
+
|
114 |
+
# تحميل بيانات CIFAR-100
|
115 |
+
(x_train, _), _ = cifar100.load_data()
|
116 |
+
|
117 |
+
# اختيار بعض الصور العشوائية
|
118 |
+
num_images = 5
|
119 |
+
random_indices = np.random.choice(len(x_train), num_images)
|
120 |
+
sample_images = x_train[random_indices]
|
121 |
+
|
122 |
+
# تحويل الصور من Tensor إلى NumPy إذا لزم الأمر
|
123 |
+
sample_images_np = [img if isinstance(img, np.ndarray) else img.numpy() for img in sample_images]
|
124 |
+
|
125 |
+
# تحويل الصور إلى نوع uint8
|
126 |
+
sample_images_np = [img.astype(np.uint8) for img in sample_images_np]
|
127 |
+
|
128 |
+
# تحسين دقة الصورة باستخدام PIL
|
129 |
+
def upscale_image(image, scale_factor):
|
130 |
+
img = Image.fromarray(image)
|
131 |
+
new_size = (img.width * scale_factor, img.height * scale_factor)
|
132 |
+
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
|
133 |
+
return np.array(img_upscaled)
|
134 |
+
|
135 |
+
# تطبيق فلتر حاد على الصورة
|
136 |
+
def sharpen_image(image):
|
137 |
+
kernel = np.array([[0, -1, 0],
|
138 |
+
[-1, 5, -1],
|
139 |
+
[0, -1, 0]])
|
140 |
+
sharpened = cv2.filter2D(src=image, ddepth=-1, kernel=kernel)
|
141 |
+
return sharpened
|
142 |
+
|
143 |
+
# عرض الصور الأصلية، المكبرة والمحسنة بالفلتر الحاد
|
144 |
+
plt.figure(figsize=(20, 10), dpi=100)
|
145 |
+
for i in range(num_images):
|
146 |
+
# عرض الصورة الأصلية
|
147 |
+
plt.subplot(3, num_images, i + 1)
|
148 |
+
plt.imshow(sample_images_np[i])
|
149 |
+
plt.title(f"Original Image {i+1}", fontsize=16)
|
150 |
+
plt.axis('off')
|
151 |
+
|
152 |
+
# عرض الصورة المكبرة
|
153 |
+
img_upscaled = upscale_image(sample_images_np[i], 4)
|
154 |
+
plt.subplot(3, num_images, num_images + i + 1)
|
155 |
+
plt.imshow(img_upscaled)
|
156 |
+
plt.title(f"Upscaled Image {i+1}", fontsize=16)
|
157 |
+
plt.axis('off')
|
158 |
+
|
159 |
+
plt.tight_layout()
|
160 |
+
plt.show()
|
161 |
+
|
162 |
+
|
163 |
+
# In[37]:
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
+
import matplotlib.pyplot as plt
|
168 |
+
import tensorflow as tf
|
169 |
+
from tensorflow.keras.models import Sequential
|
170 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, BatchNormalization, Dropout, GlobalAveragePooling2D, Dense, Input
|
171 |
+
from tensorflow.keras.optimizers import Adam
|
172 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
173 |
+
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, LearningRateScheduler
|
174 |
+
|
175 |
+
|
176 |
+
# تحويل التسميات إلى تصنيف فئة
|
177 |
+
y_train_encoded = tf.keras.utils.to_categorical(y_train, num_classes=100)
|
178 |
+
y_test_encoded = tf.keras.utils.to_categorical(y_test, num_classes=100)
|
179 |
+
|
180 |
+
# إعدادات تعزيز البيانات
|
181 |
+
datagen = ImageDataGenerator(
|
182 |
+
rotation_range=20,
|
183 |
+
width_shift_range=0.2,
|
184 |
+
height_shift_range=0.2,
|
185 |
+
horizontal_flip=True,
|
186 |
+
zoom_range=0.2,
|
187 |
+
shear_range=0.1,
|
188 |
+
brightness_range=[0.8, 1.2],
|
189 |
+
channel_shift_range=0.1,
|
190 |
+
fill_mode='nearest' # استخدام طريقة الملء للحفاظ على جودة الصور
|
191 |
+
)
|
192 |
+
|
193 |
+
# ملاءمة بيانات التدريب على المعزز
|
194 |
+
datagen.fit(x_train)
|
195 |
+
|
196 |
+
# وظيفة لتقليل معدل التعلم كل 10 حلقات
|
197 |
+
def scheduler(epoch, lr):
|
198 |
+
if epoch % 10 == 0 and epoch != 0:
|
199 |
+
lr = lr / 2
|
200 |
+
return lr
|
201 |
+
|
202 |
+
# إعداد الإيقاف المبكر وخفض معدل التعلم
|
203 |
+
early_stopping = EarlyStopping(
|
204 |
+
monitor='val_loss',
|
205 |
+
patience=10,
|
206 |
+
restore_best_weights=True,
|
207 |
+
verbose=1
|
208 |
+
)
|
209 |
+
|
210 |
+
reduce_lr = ReduceLROnPlateau(
|
211 |
+
monitor='val_loss',
|
212 |
+
factor=0.5,
|
213 |
+
patience=5,
|
214 |
+
min_lr=1e-6,
|
215 |
+
verbose=1
|
216 |
+
)
|
217 |
+
|
218 |
+
# بناء النموذج المحسن باستخدام Input
|
219 |
+
model = Sequential([
|
220 |
+
Input(shape=(32, 32, 3)),
|
221 |
+
Conv2D(64, (3, 3), activation='relu', padding='same'),
|
222 |
+
BatchNormalization(),
|
223 |
+
MaxPooling2D(pool_size=(2, 2)),
|
224 |
+
Dropout(0.3),
|
225 |
+
|
226 |
+
Conv2D(128, (3, 3), activation='relu', padding='same'),
|
227 |
+
BatchNormalization(),
|
228 |
+
MaxPooling2D(pool_size=(2, 2)),
|
229 |
+
Dropout(0.3),
|
230 |
+
|
231 |
+
Conv2D(256, (3, 3), activation='relu', padding='same'),
|
232 |
+
BatchNormalization(),
|
233 |
+
MaxPooling2D(pool_size=(2, 2)),
|
234 |
+
Dropout(0.3),
|
235 |
+
|
236 |
+
Conv2D(512, (3, 3), activation='relu', padding='same'),
|
237 |
+
BatchNormalization(),
|
238 |
+
Dropout(0.4),
|
239 |
+
|
240 |
+
Conv2D(512, (3, 3), activation='relu', padding='same'),
|
241 |
+
BatchNormalization(),
|
242 |
+
MaxPooling2D(pool_size=(2, 2)),
|
243 |
+
Dropout(0.4),
|
244 |
+
|
245 |
+
GlobalAveragePooling2D(),
|
246 |
+
Dense(1024, activation='relu'),
|
247 |
+
Dropout(0.5),
|
248 |
+
Dense(512, activation='relu'),
|
249 |
+
Dropout(0.5),
|
250 |
+
Dense(100, activation='softmax')
|
251 |
+
])
|
252 |
+
|
253 |
+
# تجميع النموذج مع استخدام Adam
|
254 |
+
model.compile(
|
255 |
+
loss='categorical_crossentropy',
|
256 |
+
optimizer=Adam(learning_rate=0.001),
|
257 |
+
metrics=['accuracy', tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.Recall(name='recall')]
|
258 |
+
)
|
259 |
+
|
260 |
+
# تدريب النموذج
|
261 |
+
history = model.fit(
|
262 |
+
datagen.flow(x_train, y_train_encoded, batch_size=64),
|
263 |
+
epochs=50,
|
264 |
+
validation_data=(x_test, y_test_encoded),
|
265 |
+
verbose=1,
|
266 |
+
callbacks=[LearningRateScheduler(scheduler), early_stopping, reduce_lr]
|
267 |
+
)
|
268 |
+
|
269 |
+
# حفظ النموذج المدرب
|
270 |
+
model.save('original_model.h5')
|
271 |
+
|
272 |
+
|
273 |
+
# In[38]:
|
274 |
+
|
275 |
+
|
276 |
+
model = load_model('original_model.h5')
|
277 |
+
|
278 |
+
# تقييم النموذج على بيانات الاختبار
|
279 |
+
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
|
280 |
+
print(f"Test Accuracy: {accuracy * 100:.2f}%")
|
281 |
+
print(f"Test Precision: {precision * 100:.2f}%")
|
282 |
+
print(f"Test Recall: {recall * 100:.2f}%")
|
283 |
+
print(f"Test Loss: {loss * 100:.4f}%")
|
284 |
+
|
285 |
+
|
286 |
+
# In[39]:
|
287 |
+
|
288 |
+
|
289 |
+
model = load_model('original_model.h5')
|
290 |
+
|
291 |
+
# اختيار بعض الصور العشوائية من مجموعة الاختبار
|
292 |
+
num_images = 5
|
293 |
+
random_indices = np.random.choice(len(x_test), num_images)
|
294 |
+
sample_images_test = x_test[random_indices]
|
295 |
+
|
296 |
+
# تحويل الصور من Tensor إلى NumPy
|
297 |
+
sample_images_test_np = [img.numpy() if isinstance(img, tf.Tensor) else img for img in sample_images_test]
|
298 |
+
|
299 |
+
# تحويل الصور إلى نوع uint8
|
300 |
+
sample_images_test_np = [img.astype(np.uint8) for img in sample_images_test_np]
|
301 |
+
|
302 |
+
# تحسين دقة الصورة باستخدام PIL
|
303 |
+
from PIL import Image
|
304 |
+
|
305 |
+
def upscale_image(image, scale_factor):
|
306 |
+
img = Image.fromarray(image)
|
307 |
+
new_size = (img.width * scale_factor, img.height * scale_factor)
|
308 |
+
img_upscaled = img.resize(new_size, Image.BICUBIC) # استخدام تقنية الاستيفاء البعدي
|
309 |
+
return np.array(img_upscaled)
|
310 |
+
|
311 |
+
# عرض الصور الأصلية والمحسنة من مجموعة الاختبار
|
312 |
+
plt.figure(figsize=(20, 10), dpi=100)
|
313 |
+
for i in range(num_images):
|
314 |
+
plt.subplot(2, num_images, i + 1)
|
315 |
+
plt.imshow(sample_images_test_np[i])
|
316 |
+
plt.title(f"Original Test Image {i+1}", fontsize=16)
|
317 |
+
plt.axis('off')
|
318 |
+
plt.subplot(2, num_images, i + 1 + num_images)
|
319 |
+
img_upscaled = upscale_image(sample_images_test_np[i], 4)
|
320 |
+
plt.imshow(img_upscaled)
|
321 |
+
plt.title(f"Upscaled Test Image {i+1}", fontsize=16)
|
322 |
+
plt.axis('off')
|
323 |
+
plt.tight_layout()
|
324 |
+
plt.show()
|
325 |
+
|
326 |
+
|
327 |
+
# In[40]:
|
328 |
+
|
329 |
+
|
330 |
+
model = load_model('original_model.h5')
|
331 |
+
|
332 |
+
# رسم منحنيات التدريب
|
333 |
+
plt.figure(figsize=(18, 10))
|
334 |
+
|
335 |
+
# Accuracy
|
336 |
+
plt.subplot(2, 2, 1)
|
337 |
+
plt.plot(history.history['accuracy'], label='Accuracy')
|
338 |
+
plt.plot(history.history['val_accuracy'], label='Val Accuracy')
|
339 |
+
plt.xlabel('Epochs')
|
340 |
+
plt.ylabel('Accuracy')
|
341 |
+
plt.legend()
|
342 |
+
plt.title('Training and Validation Accuracy')
|
343 |
+
|
344 |
+
# Loss
|
345 |
+
plt.subplot(2, 2, 2)
|
346 |
+
plt.plot(history.history['loss'], label='Loss')
|
347 |
+
plt.plot(history.history['val_loss'], label='Val Loss')
|
348 |
+
plt.xlabel('Epochs')
|
349 |
+
plt.ylabel('Loss')
|
350 |
+
plt.legend()
|
351 |
+
plt.title('Training and Validation Loss')
|
352 |
+
|
353 |
+
# Precision
|
354 |
+
plt.subplot(2, 2, 3)
|
355 |
+
plt.plot(history.history['precision'], label='Precision')
|
356 |
+
plt.plot(history.history['val_precision'], label='Val Precision')
|
357 |
+
plt.xlabel('Epochs')
|
358 |
+
plt.ylabel('Precision')
|
359 |
+
plt.legend()
|
360 |
+
plt.title('Training and Validation Precision')
|
361 |
+
|
362 |
+
# Recall
|
363 |
+
plt.subplot(2, 2, 4)
|
364 |
+
plt.plot(history.history['recall'], label='Recall')
|
365 |
+
plt.plot(history.history['val_recall'], label='Val Recall')
|
366 |
+
plt.xlabel('Epochs')
|
367 |
+
plt.ylabel('Recall')
|
368 |
+
plt.legend()
|
369 |
+
plt.title('Training and Validation Recall')
|
370 |
+
|
371 |
+
plt.tight_layout()
|
372 |
+
plt.show()
|
373 |
+
|
374 |
+
|
375 |
+
# In[41]:
|
376 |
+
|
377 |
+
|
378 |
+
model = load_model('original_model.h5')
|
379 |
+
|
380 |
+
model.summary()
|
381 |
+
|
382 |
+
|
383 |
+
# In[44]:
|
384 |
+
|
385 |
+
|
386 |
+
# تحميل بيانات CIFAR-100
|
387 |
+
(x_train, y_train), (x_test, y_test) = cifar100.load_data(label_mode='fine')
|
388 |
+
|
389 |
+
# تحويل التسميات إلى ترميز الفئات الثنائية
|
390 |
+
num_classes = 100
|
391 |
+
y_train_encoded = to_categorical(y_train, num_classes=num_classes)
|
392 |
+
y_test_encoded = to_categorical(y_test, num_classes=num_classes)
|
393 |
+
|
394 |
+
# دالة لتحويلات الملمس
|
395 |
+
def apply_texture_transformations(image):
|
396 |
+
blurred_image = gaussian_filter(image, sigma=0.5)
|
397 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 4.0
|
398 |
+
noise = np.random.normal(0, 0.01, image.shape) * 255
|
399 |
+
noisy_image = image + noise
|
400 |
+
transformed_image = 0.8 * image + 0.1 * laplacian_image + 0.1 * noisy_image
|
401 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
402 |
+
return transformed_image
|
403 |
+
|
404 |
+
# نسبة التسميم
|
405 |
+
poison_fraction = 0.5
|
406 |
+
num_poisoned = int(poison_fraction * len(x_train))
|
407 |
+
poisoned_indices = np.arange(len(x_train))
|
408 |
+
x_poison_part = x_train[poisoned_indices]
|
409 |
+
y_poison_encoded_part = y_train_encoded[poisoned_indices]
|
410 |
+
x_poisoned = np.array([apply_texture_transformations(img) for img in x_poison_part])
|
411 |
+
x_train_combined = x_poisoned
|
412 |
+
y_train_encoded_combined = y_poison_encoded_part
|
413 |
+
|
414 |
+
# إعداد مولد بيانات التعزيز
|
415 |
+
datagen = ImageDataGenerator(
|
416 |
+
rotation_range=40,
|
417 |
+
width_shift_range=0.3,
|
418 |
+
height_shift_range=0.3,
|
419 |
+
shear_range=0.3,
|
420 |
+
zoom_range=0.3,
|
421 |
+
horizontal_flip=True,
|
422 |
+
fill_mode='nearest',
|
423 |
+
brightness_range=[0.8, 1.2],
|
424 |
+
channel_shift_range=0.1
|
425 |
+
)
|
426 |
+
|
427 |
+
datagen.fit(x_train_combined)
|
428 |
+
|
429 |
+
# إعداد الإيقاف المبكر وتقليل معدل التعلم
|
430 |
+
early_stopping = EarlyStopping(
|
431 |
+
monitor='val_loss',
|
432 |
+
patience=10,
|
433 |
+
restore_best_weights=True,
|
434 |
+
verbose=1
|
435 |
+
)
|
436 |
+
|
437 |
+
reduce_lr = ReduceLROnPlateau(
|
438 |
+
monitor='val_loss',
|
439 |
+
factor=0.5,
|
440 |
+
patience=5,
|
441 |
+
min_lr=1e-6,
|
442 |
+
verbose=1
|
443 |
+
)
|
444 |
+
|
445 |
+
# تحميل النموذج الأصلي
|
446 |
+
model = load_model('original_model.h5')
|
447 |
+
|
448 |
+
# إعادة تجميع النموذج الأصلي مع البيانات المسمومة
|
449 |
+
model.compile(
|
450 |
+
loss='categorical_crossentropy',
|
451 |
+
optimizer=Adam(learning_rate=0.001),
|
452 |
+
metrics=['accuracy', 'precision', 'recall'] # تم إزالة 'loss' من المقاييس
|
453 |
+
)
|
454 |
+
|
455 |
+
# تدريب النموذج على البيانات المسمومة
|
456 |
+
history = model.fit(
|
457 |
+
datagen.flow(x_train_combined, y_train_encoded_combined, batch_size=64),
|
458 |
+
epochs=20,
|
459 |
+
validation_data=(x_test, y_test_encoded),
|
460 |
+
verbose=1,
|
461 |
+
callbacks=[early_stopping, reduce_lr]
|
462 |
+
)
|
463 |
+
|
464 |
+
# حفظ النموذج باستخدام الدالة المعرفة
|
465 |
+
model.save('texture_transformed_model.h5')
|
466 |
+
|
467 |
+
|
468 |
+
# In[47]:
|
469 |
+
|
470 |
+
|
471 |
+
model = load_model('texture_transformed_model.h5')
|
472 |
+
|
473 |
+
# تقييم النموذج على بيانات الاختبار
|
474 |
+
loss, accuracy, precision, recall = model.evaluate(x_test, y_test_encoded, verbose=1)
|
475 |
+
print(f"Test Accuracy: {accuracy * 100:.2f}%")
|
476 |
+
print(f"Test Precision: {precision * 100:.2f}%")
|
477 |
+
print(f"Test Recall: {recall * 100:.2f}%")
|
478 |
+
print(f"Test Loss: {loss * 100:.4f}%")
|
479 |
+
|
480 |
+
|
481 |
+
# In[51]:
|
482 |
+
|
483 |
+
|
484 |
+
model = load_model('texture_transformed_model.h5')
|
485 |
+
|
486 |
+
# تقييم النموذج لبناء المقاييس
|
487 |
+
initial_evaluation = model.evaluate(x_test, y_test_encoded, verbose=1)
|
488 |
+
print(f"Initial evaluation - Loss: {initial_evaluation[0]}, Accuracy: {initial_evaluation[1]}")
|
489 |
+
|
490 |
+
|
491 |
+
# In[62]:
|
492 |
+
|
493 |
+
|
494 |
+
|
495 |
+
# تحميل النموذج المحول
|
496 |
+
model = load_model('texture_transformed_model.h5')
|
497 |
+
|
498 |
+
# تحديد عدد الصور للعرض
|
499 |
+
num_samples = 6
|
500 |
+
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
|
501 |
+
|
502 |
+
plt.figure(figsize=(15, 6))
|
503 |
+
for i, idx in enumerate(random_indices):
|
504 |
+
# عرض الصور الأصلية
|
505 |
+
plt.subplot(2, num_samples, i + 1)
|
506 |
+
plt.imshow(x_train[idx].astype('uint8'))
|
507 |
+
plt.title(f'Original {y_train[idx][0]}')
|
508 |
+
plt.axis('off')
|
509 |
+
|
510 |
+
# عرض الصور المسممة
|
511 |
+
plt.subplot(2, num_samples, i + 1 + num_samples)
|
512 |
+
plt.imshow(x_poisoned[idx].astype('uint8'))
|
513 |
+
plt.title(f'Poisoned {y_train[idx][0]}')
|
514 |
+
plt.axis('off')
|
515 |
+
|
516 |
+
plt.tight_layout()
|
517 |
+
plt.show()
|
518 |
+
|
519 |
+
|
520 |
+
# In[48]:
|
521 |
+
|
522 |
+
|
523 |
+
model = load_model('texture_transformed_model.h5')
|
524 |
+
|
525 |
+
# عرض الصور الأصلية والمسممة للمقارنة
|
526 |
+
num_samples = 6
|
527 |
+
random_indices = np.random.choice(len(x_train), num_samples, replace=False)
|
528 |
+
|
529 |
+
plt.figure(figsize=(15, 6))
|
530 |
+
for i, idx in enumerate(random_indices):
|
531 |
+
plt.subplot(2, num_samples, i + 1)
|
532 |
+
plt.imshow(x_train[idx].astype('uint8'))
|
533 |
+
plt.title(f'Original {y_train[idx][0]}')
|
534 |
+
plt.axis('off')
|
535 |
+
|
536 |
+
plt.subplot(2, num_samples, i + 1 + num_samples)
|
537 |
+
plt.imshow(x_poisoned[idx].astype('uint8'))
|
538 |
+
plt.title(f'Poisoned {y_train[idx][0]}')
|
539 |
+
plt.axis('off')
|
540 |
+
plt.show()
|
541 |
+
|
542 |
+
|
543 |
+
# In[49]:
|
544 |
+
|
545 |
+
|
546 |
+
model = load_model('texture_transformed_model.h5')
|
547 |
+
|
548 |
+
plt.tight_layout()
|
549 |
+
plt.show()
|
550 |
+
|
551 |
+
# عرض النتائج من التدريب
|
552 |
+
plt.figure(figsize=(12, 6))
|
553 |
+
plt.subplot(2, 2, 1)
|
554 |
+
plt.plot(history.history['accuracy'], label='Training Accuracy')
|
555 |
+
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
|
556 |
+
plt.title('Accuracy over epochs')
|
557 |
+
plt.legend()
|
558 |
+
|
559 |
+
plt.subplot(2, 2, 2)
|
560 |
+
plt.plot(history.history['loss'], label='Training Loss')
|
561 |
+
plt.plot(history.history['val_loss'], label='Validation Loss')
|
562 |
+
plt.title('Loss over epochs')
|
563 |
+
plt.legend()
|
564 |
+
|
565 |
+
plt.subplot(2, 2, 3)
|
566 |
+
plt.plot(history.history['precision'], label='Training Precision')
|
567 |
+
plt.plot(history.history['val_precision'], label='Validation Precision')
|
568 |
+
plt.title('Precision over epochs')
|
569 |
+
plt.legend()
|
570 |
+
|
571 |
+
plt.subplot(2, 2, 4)
|
572 |
+
plt.plot(history.history['recall'], label='Training Recall')
|
573 |
+
plt.plot(history.history['val_recall'], label='Validation Recall')
|
574 |
+
plt.title('Recall over epochs')
|
575 |
+
plt.legend()
|
576 |
+
|
577 |
+
plt.tight_layout()
|
578 |
+
plt.show()
|
579 |
+
|
580 |
+
|
581 |
+
# In[64]:
|
582 |
+
|
583 |
+
|
584 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
585 |
+
from scipy.ndimage import gaussian_filter, laplace
|
586 |
+
import tensorflow as tf
|
587 |
+
|
588 |
+
# Load the trained model
|
589 |
+
model = load_model('texture_transformed_model.h5')
|
590 |
+
|
591 |
+
# Ensure the model is compiled with metrics
|
592 |
+
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
|
593 |
+
|
594 |
+
# Function for texture transformations with reduced effects
|
595 |
+
def apply_texture_transformations(image):
|
596 |
+
blurred_image = gaussian_filter(image, sigma=0.05) # Reduce sigma to minimum
|
597 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0 # Significantly reduce laplace effect
|
598 |
+
noise = np.random.normal(0, 0.001, image.shape) * 255 # Significantly reduce noise
|
599 |
+
noisy_image = image + noise
|
600 |
+
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image # Minimize transformation effects
|
601 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
602 |
+
return transformed_image
|
603 |
+
|
604 |
+
# Function to resize image while maintaining quality using Bicubic Interpolation
|
605 |
+
def resize_image_with_quality(image, target_size):
|
606 |
+
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
|
607 |
+
return resized_image
|
608 |
+
|
609 |
+
# Function to load and process external images while retaining original size
|
610 |
+
def load_and_preprocess_image(image_path):
|
611 |
+
if not os.path.exists(image_path):
|
612 |
+
print(f"File not found: {image_path}")
|
613 |
+
return None
|
614 |
+
img = load_img(image_path)
|
615 |
+
img_array = img_to_array(img)
|
616 |
+
original_shape = img_array.shape[:2] # Save original dimensions without channels
|
617 |
+
resized_image = resize_image_with_quality(img_array, (224, 224)) # Resize to larger size to retain details
|
618 |
+
resized_image = resized_image.astype('float32') / 255.0 # Normalize the image
|
619 |
+
return resized_image, original_shape
|
620 |
+
|
621 |
+
# Paths to external images
|
622 |
+
image_paths = [
|
623 |
+
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
|
624 |
+
r'C:\Users\Lenovo\Desktop\images.jpeg',
|
625 |
+
r'C:\Users\Lenovo\Desktop\tree.jpeg'
|
626 |
+
]
|
627 |
+
|
628 |
+
# Load and process external images while retaining original dimensions
|
629 |
+
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
|
630 |
+
external_images_info = [info for info in external_images_info if info is not None]
|
631 |
+
|
632 |
+
# Check if any images were loaded
|
633 |
+
if not external_images_info:
|
634 |
+
print("No images were loaded. Please check your image paths.")
|
635 |
+
else:
|
636 |
+
external_images, original_shapes = zip(*external_images_info)
|
637 |
+
external_images = np.array(external_images)
|
638 |
+
|
639 |
+
# Apply texture transformations
|
640 |
+
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
|
641 |
+
|
642 |
+
# Resize transformed images to their original size
|
643 |
+
external_images_transformed_resized = []
|
644 |
+
for i, transformed_image in enumerate(external_images_transformed):
|
645 |
+
original_shape = original_shapes[i] # Extract original dimensions
|
646 |
+
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1]) # Note CV2 dimensions (width x height)
|
647 |
+
external_images_transformed_resized.append(transformed_resized)
|
648 |
+
|
649 |
+
# Define the prediction function
|
650 |
+
@tf.function
|
651 |
+
def model_predict(model, input_data):
|
652 |
+
return model(input_data, training=False)
|
653 |
+
|
654 |
+
# Conduct predictions
|
655 |
+
predictions = model_predict(model, external_images_transformed)
|
656 |
+
|
657 |
+
# Display results
|
658 |
+
for i, image_path in enumerate(image_paths):
|
659 |
+
if os.path.exists(image_path):
|
660 |
+
plt.figure(figsize=(10, 5))
|
661 |
+
|
662 |
+
# Display the original image
|
663 |
+
plt.subplot(1, 2, 1)
|
664 |
+
original_img = load_img(image_path)
|
665 |
+
plt.imshow(original_img)
|
666 |
+
plt.title('Original Image')
|
667 |
+
plt.axis('off')
|
668 |
+
|
669 |
+
# Display the poisoned image
|
670 |
+
plt.subplot(1, 2, 2)
|
671 |
+
poisoned_img = external_images_transformed_resized[i]
|
672 |
+
plt.imshow(poisoned_img.astype(np.uint8))
|
673 |
+
plt.title('Poisoned Image')
|
674 |
+
plt.axis('off')
|
675 |
+
|
676 |
+
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
|
677 |
+
plt.show()
|
678 |
+
|
679 |
+
|
680 |
+
# In[63]:
|
681 |
+
|
682 |
+
|
683 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
684 |
+
from scipy.ndimage import gaussian_filter, laplace
|
685 |
+
|
686 |
+
# تحميل النموذج المدرب
|
687 |
+
model = load_model('texture_transformed_model.h5')
|
688 |
+
|
689 |
+
# دالة لتحويلات النسيج مع تقليل التأثيرات
|
690 |
+
def apply_texture_transformations(image):
|
691 |
+
blurred_image = gaussian_filter(image, sigma=0.05)
|
692 |
+
laplacian_image = laplace(blurred_image, mode='reflect') / 100.0
|
693 |
+
noise = np.random.normal(0, 0.001, image.shape) * 255
|
694 |
+
noisy_image = image + noise
|
695 |
+
transformed_image = 0.98 * image + 0.01 * laplacian_image + 0.01 * noisy_image
|
696 |
+
transformed_image = np.clip(transformed_image, 0, 255).astype(np.uint8)
|
697 |
+
return transformed_image
|
698 |
+
|
699 |
+
# دالة لإعادة تشكيل الصورة مع الحفاظ على الجودة باستخدام Bicubic Interpolation
|
700 |
+
def resize_image_with_quality(image, target_size):
|
701 |
+
resized_image = cv2.resize(image, target_size, interpolation=cv2.INTER_CUBIC)
|
702 |
+
return resized_image
|
703 |
+
|
704 |
+
# دالة لتحميل ومعالجة الصور الخارجية مع الاحتفاظ بحجمها الأصلي
|
705 |
+
def load_and_preprocess_image(image_path):
|
706 |
+
if not os.path.exists(image_path):
|
707 |
+
print(f"File not found: {image_path}")
|
708 |
+
return None
|
709 |
+
img = load_img(image_path)
|
710 |
+
img_array = img_to_array(img)
|
711 |
+
original_shape = img_array.shape[:2]
|
712 |
+
resized_image = resize_image_with_quality(img_array, (224, 224))
|
713 |
+
resized_image = resized_image.astype('float32') / 255.0
|
714 |
+
return resized_image, original_shape
|
715 |
+
|
716 |
+
# مسارات الصور الخارجية
|
717 |
+
image_paths = [
|
718 |
+
r'C:\Users\Lenovo\Desktop\jaguar.jpeg',
|
719 |
+
r'C:\Users\Lenovo\Desktop\images.jpeg',
|
720 |
+
r'C:\Users\Lenovo\Desktop\tree.jpeg'
|
721 |
+
]
|
722 |
+
|
723 |
+
# تحميل ومعالجة الصور الخارجية مع الحفاظ على الأبعاد الأصلية
|
724 |
+
external_images_info = [load_and_preprocess_image(image_path) for image_path in image_paths]
|
725 |
+
external_images_info = [info for info in external_images_info if info is not None]
|
726 |
+
|
727 |
+
# التحقق مما إذا كانت هناك صور تم تحميلها
|
728 |
+
if not external_images_info:
|
729 |
+
print("No images were loaded. Please check your image paths.")
|
730 |
+
else:
|
731 |
+
external_images, original_shapes = zip(*external_images_info)
|
732 |
+
external_images = np.array(external_images)
|
733 |
+
|
734 |
+
# تطبيق التحويلات الملمسية
|
735 |
+
external_images_transformed = np.array([apply_texture_transformations(img * 255) / 255.0 for img in external_images])
|
736 |
+
|
737 |
+
# إعادة تشكيل الصور المسممة إلى حجمها الأصلي
|
738 |
+
external_images_transformed_resized = []
|
739 |
+
for i, transformed_image in enumerate(external_images_transformed):
|
740 |
+
original_shape = original_shapes[i]
|
741 |
+
transformed_resized = resize_image_with_quality(transformed_image * 255, original_shape[::-1])
|
742 |
+
external_images_transformed_resized.append(transformed_resized)
|
743 |
+
|
744 |
+
# إجراء التنبؤ
|
745 |
+
predictions = model.predict(external_images_transformed)
|
746 |
+
|
747 |
+
# عرض النتائج
|
748 |
+
for i, image_path in enumerate(image_paths):
|
749 |
+
if os.path.exists(image_path):
|
750 |
+
plt.figure(figsize=(10, 5))
|
751 |
+
|
752 |
+
# عرض الصورة الأصلية
|
753 |
+
plt.subplot(1, 2, 1)
|
754 |
+
original_img = load_img(image_path)
|
755 |
+
plt.imshow(original_img)
|
756 |
+
plt.title('Original Image')
|
757 |
+
plt.axis('off')
|
758 |
+
|
759 |
+
# عرض الصورة المسممة
|
760 |
+
plt.subplot(1, 2, 2)
|
761 |
+
poisoned_img = external_images_transformed_resized[i]
|
762 |
+
plt.imshow(poisoned_img.astype(np.uint8))
|
763 |
+
plt.title('Poisoned Image')
|
764 |
+
plt.axis('off')
|
765 |
+
|
766 |
+
plt.suptitle(f'Prediction: {np.argmax(predictions[i])}')
|
767 |
+
plt.show()
|
768 |
+
|
769 |
+
|
770 |
+
# In[ ]:
|
771 |
+
|
772 |
+
|
773 |
+
from flask import Flask, request, jsonify
|
774 |
+
import numpy as np
|
775 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
776 |
+
from tensorflow.keras.models import load_model
|
777 |
+
import cv2
|
778 |
+
from scipy.ndimage import gaussian_filter, laplace
|
779 |
+
|
780 |
+
app = Flask(__name__)
|
781 |
+
|
782 |
+
# Load your model
|
783 |
+
model = load_model('texture_transformed_model.h5')
|
784 |
+
|
785 |
+
# Define functions for image processing
|
786 |
+
def apply_texture_transformations(image):
|
787 |
+
# Your texture transformation function here
|
788 |
+
pass
|
789 |
+
|
790 |
+
def resize_image_with_quality(image, target_size):
|
791 |
+
# Your image resizing function here
|
792 |
+
pass
|
793 |
+
|
794 |
+
def load_and_preprocess_image(image_path):
|
795 |
+
# Your image loading and preprocessing function here
|
796 |
+
pass
|
797 |
+
|
798 |
+
@app.route('/predict', methods=['POST'])
|
799 |
+
def predict():
|
800 |
+
if 'image' not in request.files:
|
801 |
+
return jsonify({'error': 'No file part in the request'}), 400
|
802 |
+
|
803 |
+
file = request.files['image']
|
804 |
+
image_path = f'/tmp/{file.filename}'
|
805 |
+
file.save(image_path)
|
806 |
+
|
807 |
+
# Process the uploaded image
|
808 |
+
image, _ = load_and_preprocess_image(image_path)
|
809 |
+
transformed_image = apply_texture_transformations(image)
|
810 |
+
|
811 |
+
# Make predictions
|
812 |
+
prediction = model.predict(np.expand_dims(transformed_image, axis=0))
|
813 |
+
|
814 |
+
# Decode prediction (assuming your model outputs categorical predictions)
|
815 |
+
predicted_class = np.argmax(prediction)
|
816 |
+
|
817 |
+
# Return the result
|
818 |
+
return jsonify({'prediction': predicted_class})
|
819 |
+
|
820 |
+
if __name__ == '__main__':
|
821 |
+
app.run(debug=True)
|
822 |
+
|
823 |
+
|
824 |
+
# In[ ]:
|
825 |
+
|
826 |
+
|
827 |
+
python app.py
|
828 |
+
#http://127.0.0.1:5000/predict
|
829 |
+
|
830 |
+
|
831 |
+
# In[ ]:
|
832 |
+
|
833 |
+
|
834 |
+
|
835 |
+
|