--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: mlm results: - task: name: Masked Language Modeling type: fill-mask dataset: name: wikitext wikitext-2-raw-v1 type: wikitext config: wikitext-2-raw-v1 split: validation args: wikitext-2-raw-v1 metrics: - name: Accuracy type: accuracy value: 0.7302927161334241 --- # mlm This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the wikitext wikitext-2-raw-v1 dataset. It achieves the following results on the evaluation set: - Loss: 1.2468 - Accuracy: 0.7303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3758 | 1.0 | 150 | 1.2826 | 0.7277 | | 1.3763 | 2.0 | 300 | 1.2747 | 0.7272 | | 1.3558 | 3.0 | 450 | 1.2607 | 0.7278 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3