nfliu commited on
Commit
b7a753a
·
1 Parent(s): b4bdd21

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - boolq
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: boolq
16
+ type: boolq
17
+ config: default
18
+ split: validation
19
+ args: default
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.7379204892966361
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # MiniLMv2-L6-H768-distilled-from-RoBERTa-Large_boolq
30
+
31
+ This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H768-distilled-from-RoBERTa-Large) on the boolq dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.5417
34
+ - Accuracy: 0.7379
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 1e-05
54
+ - train_batch_size: 32
55
+ - eval_batch_size: 8
56
+ - seed: 42
57
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
58
+ - lr_scheduler_type: linear
59
+ - num_epochs: 5.0
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | No log | 0.85 | 250 | 0.6579 | 0.6190 |
66
+ | 0.6352 | 1.69 | 500 | 0.5907 | 0.6841 |
67
+ | 0.6352 | 2.54 | 750 | 0.5613 | 0.7196 |
68
+ | 0.535 | 3.39 | 1000 | 0.5444 | 0.7373 |
69
+ | 0.535 | 4.24 | 1250 | 0.5417 | 0.7379 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.30.2
75
+ - Pytorch 2.0.1+cu117
76
+ - Datasets 2.14.4
77
+ - Tokenizers 0.13.3