Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- fp8
|
4 |
+
- vllm
|
5 |
+
license: other
|
6 |
+
license_name: bigcode-openrail-m
|
7 |
+
license_link: https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement
|
8 |
+
---
|
9 |
+
|
10 |
+
# starcoder2-3b-FP8
|
11 |
+
|
12 |
+
## Model Overview
|
13 |
+
- **Model Architecture:** starcoder2-3b
|
14 |
+
- **Input:** Text
|
15 |
+
- **Output:** Text
|
16 |
+
- **Model Optimizations:**
|
17 |
+
- **Weight quantization:** FP8
|
18 |
+
- **Activation quantization:** FP8
|
19 |
+
- **Intended Use Cases:** Intended for commercial and research use in English.
|
20 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
21 |
+
- **Release Date:** 8/1/2024
|
22 |
+
- **Version:** 1.0
|
23 |
+
- **License(s):** [bigcode-openrail-m](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
|
24 |
+
- **Model Developers:** Neural Magic
|
25 |
+
|
26 |
+
Quantized version of [starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b).
|
27 |
+
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
|
28 |
+
It achieves an average score of 35.53 on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 35.35.
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights and activations of [starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) to FP8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
34 |
+
|
35 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
|
36 |
+
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
|
37 |
+
|
38 |
+
<!-- ## Deployment
|
39 |
+
|
40 |
+
### Use with vLLM
|
41 |
+
|
42 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
43 |
+
|
44 |
+
```python
|
45 |
+
from vllm import LLM, SamplingParams
|
46 |
+
from transformers import AutoTokenizer
|
47 |
+
|
48 |
+
model_id = "neuralmagic/starcoder2-3b-FP8"
|
49 |
+
|
50 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
51 |
+
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
+
|
54 |
+
messages = [
|
55 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
56 |
+
{"role": "user", "content": "Who are you?"},
|
57 |
+
]
|
58 |
+
|
59 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
+
|
61 |
+
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096)
|
62 |
+
|
63 |
+
outputs = llm.generate(prompts, sampling_params)
|
64 |
+
|
65 |
+
generated_text = outputs[0].outputs[0].text
|
66 |
+
print(generated_text)
|
67 |
+
```
|
68 |
+
|
69 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. -->
|
70 |
+
|
71 |
+
## Creation
|
72 |
+
|
73 |
+
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.
|
74 |
+
A slight modification to the code was made due to the parameters of the model. Running the below code will throw an index error, and simply replacing the erroneous line with ```max_quant_shape = param.shape[0]``` resolves the issue.
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
from datasets import load_dataset
|
79 |
+
from transformers import AutoTokenizer
|
80 |
+
|
81 |
+
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
|
82 |
+
from llmcompressor.transformers.compression.helpers import (
|
83 |
+
calculate_offload_device_map,
|
84 |
+
custom_offload_device_map,
|
85 |
+
)
|
86 |
+
|
87 |
+
recipe = """
|
88 |
+
quant_stage:
|
89 |
+
quant_modifiers:
|
90 |
+
QuantizationModifier:
|
91 |
+
ignore: ["lm_head"]
|
92 |
+
config_groups:
|
93 |
+
group_0:
|
94 |
+
weights:
|
95 |
+
num_bits: 8
|
96 |
+
type: float
|
97 |
+
strategy: tensor
|
98 |
+
dynamic: false
|
99 |
+
symmetric: true
|
100 |
+
input_activations:
|
101 |
+
num_bits: 8
|
102 |
+
type: float
|
103 |
+
strategy: tensor
|
104 |
+
dynamic: false
|
105 |
+
symmetric: true
|
106 |
+
targets: ["Linear"]
|
107 |
+
"""
|
108 |
+
|
109 |
+
model_stub = "bigcode/starcoder2-3b"
|
110 |
+
model_name = model_stub.split("/")[-1]
|
111 |
+
|
112 |
+
device_map = calculate_offload_device_map(
|
113 |
+
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=torch.float16
|
114 |
+
)
|
115 |
+
|
116 |
+
model = SparseAutoModelForCausalLM.from_pretrained(
|
117 |
+
model_stub, torch_dtype=torch.float16, device_map=device_map
|
118 |
+
)
|
119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
120 |
+
|
121 |
+
output_dir = f"./{model_name}-FP8"
|
122 |
+
|
123 |
+
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
|
124 |
+
DATASET_SPLIT = "train_sft"
|
125 |
+
NUM_CALIBRATION_SAMPLES = 512
|
126 |
+
MAX_SEQUENCE_LENGTH = 4096
|
127 |
+
|
128 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
129 |
+
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
|
130 |
+
|
131 |
+
def preprocess(example):
|
132 |
+
return {
|
133 |
+
"text": " ".join([msg["content"] for msg in example["messages"]])
|
134 |
+
}
|
135 |
+
|
136 |
+
ds = ds.map(preprocess)
|
137 |
+
|
138 |
+
def tokenize(sample):
|
139 |
+
return tokenizer(
|
140 |
+
sample["text"],
|
141 |
+
padding=False,
|
142 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
143 |
+
truncation=True,
|
144 |
+
add_special_tokens=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
ds = ds.map(tokenize, remove_columns=ds.column_names)
|
148 |
+
|
149 |
+
oneshot(
|
150 |
+
model=model,
|
151 |
+
output_dir=output_dir,
|
152 |
+
dataset=ds,
|
153 |
+
recipe=recipe,
|
154 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
155 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
156 |
+
save_compressed=True,
|
157 |
+
)
|
158 |
+
```
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
The model was evaluated on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
163 |
+
```
|
164 |
+
python codegen/generate.py --model neuralmagic/starcoder2-3b-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
|
165 |
+
python evalplus/sanitize.py ~/humaneval/neuralmagic--starcoder2-3b-FP8_vllm_temp_0.2
|
166 |
+
evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--starcoder2-3b-FP8_vllm_temp_0.2-sanitized
|
167 |
+
```
|
168 |
+
|
169 |
+
### Accuracy
|
170 |
+
|
171 |
+
#### HumanEval+ evaluation scores
|
172 |
+
<table>
|
173 |
+
<tr>
|
174 |
+
<td><strong>Benchmark</strong>
|
175 |
+
</td>
|
176 |
+
<td><strong>starcoder2-3b</strong>
|
177 |
+
</td>
|
178 |
+
<td><strong>starcoder2-3b-FP8(this model)</strong>
|
179 |
+
</td>
|
180 |
+
<td><strong>Recovery</strong>
|
181 |
+
</td>
|
182 |
+
</tr>
|
183 |
+
<tr>
|
184 |
+
<td>base pass@1
|
185 |
+
</td>
|
186 |
+
<td>30.7
|
187 |
+
</td>
|
188 |
+
<td>30.8
|
189 |
+
</td>
|
190 |
+
<td>100.3%
|
191 |
+
</td>
|
192 |
+
</tr>
|
193 |
+
<tr>
|
194 |
+
<td>base pass@10
|
195 |
+
</td>
|
196 |
+
<td>44.9
|
197 |
+
</td>
|
198 |
+
<td>45.4
|
199 |
+
</td>
|
200 |
+
<td>101.1%
|
201 |
+
</td>
|
202 |
+
</tr>
|
203 |
+
<tr>
|
204 |
+
<td>base+extra pass@1
|
205 |
+
</td>
|
206 |
+
<td>26.6
|
207 |
+
</td>
|
208 |
+
<td>26.5
|
209 |
+
</td>
|
210 |
+
<td>99.62%
|
211 |
+
</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>base+extra pass@10
|
215 |
+
</td>
|
216 |
+
<td>39.2
|
217 |
+
</td>
|
218 |
+
<td>39.4
|
219 |
+
</td>
|
220 |
+
<td>100.5%
|
221 |
+
</td>
|
222 |
+
</tr>
|
223 |
+
<tr>
|
224 |
+
<td><strong>Average</strong>
|
225 |
+
</td>
|
226 |
+
<td><strong>35.35</strong>
|
227 |
+
</td>
|
228 |
+
<td><strong>35.53</strong>
|
229 |
+
</td>
|
230 |
+
<td><strong>100.3%</strong>
|
231 |
+
</td>
|
232 |
+
</tr>
|
233 |
+
</table>
|