Update README.md
Browse files
README.md
CHANGED
@@ -42,27 +42,24 @@ Only the weights and activations of the linear operators within transformers blo
|
|
42 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
43 |
|
44 |
```python
|
45 |
-
from vllm import LLM, SamplingParams
|
46 |
from transformers import AutoTokenizer
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
{"role": "
|
56 |
-
{"role": "user", "content": "Who are you?"},
|
57 |
]
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096, tensor_parallel_size=4)
|
62 |
|
63 |
-
outputs = llm.generate(
|
64 |
|
65 |
-
generated_text =
|
66 |
print(generated_text)
|
67 |
```
|
68 |
|
|
|
42 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
43 |
|
44 |
```python
|
|
|
45 |
from transformers import AutoTokenizer
|
46 |
+
from vllm import LLM, SamplingParams
|
47 |
|
48 |
+
max_model_len, tp_size = 4096, 4
|
49 |
+
model_name = "neuralmagic/DeepSeek-Coder-V2-Base-FP8"
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
|
52 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
53 |
|
54 |
+
messages_list = [
|
55 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
|
|
56 |
]
|
57 |
|
58 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
|
|
|
|
59 |
|
60 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
61 |
|
62 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
63 |
print(generated_text)
|
64 |
```
|
65 |
|