--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-superqa2 results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.2365 verified: true - name: F1 type: f1 value: 82.3326 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: test metrics: - name: Exact Match type: exact_match value: 12.4 verified: true - name: F1 type: f1 value: 12.4 verified: true - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 42.3667 verified: true - name: F1 type: f1 value: 53.3255 verified: true - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Exact Match type: exact_match value: 86.1925 verified: true - name: F1 type: f1 value: 92.4306 verified: true --- # rob-base-superqa2 This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0a0+gita4c10ee - Datasets 2.4.0 - Tokenizers 0.12.1