--- license: mit pipeline_tag: document-question-answering tags: - donut - image-to-text - vision widget: - text: "What is the invoice number?" src: "https://huggingface.co./spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" - text: "What is the purchase amount?" src: "https://huggingface.co./spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" --- # Donut (base-sized model, fine-tuned on DocVQA) Donut model fine-tuned on DocVQA. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. ![model image](https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) ## Intended uses & limitations This model is fine-tuned on DocVQA, a document visual question answering dataset. We refer to the [documentation](https://huggingface.co./docs/transformers/main/en/model_doc/donut) which includes code examples. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2111-15664, author = {Geewook Kim and Teakgyu Hong and Moonbin Yim and Jinyoung Park and Jinyeong Yim and Wonseok Hwang and Sangdoo Yun and Dongyoon Han and Seunghyun Park}, title = {Donut: Document Understanding Transformer without {OCR}}, journal = {CoRR}, volume = {abs/2111.15664}, year = {2021}, url = {https://arxiv.org/abs/2111.15664}, eprinttype = {arXiv}, eprint = {2111.15664}, timestamp = {Thu, 02 Dec 2021 10:50:44 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```