dog commited on
Commit
1a66821
·
1 Parent(s): f7687a3
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - food101
7
+ metrics:
8
+ - accuracy
9
+ model_index:
10
+ - name: food101_outputs
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: nateraw/food101
17
+ type: food101
18
+ args: default
19
+ metric:
20
+ name: Accuracy
21
+ type: accuracy
22
+ value: 0.8912871287128713
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # food101_outputs
29
+
30
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the nateraw/food101 dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.4501
33
+ - Accuracy: 0.8913
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0002
53
+ - train_batch_size: 128
54
+ - eval_batch_size: 128
55
+ - seed: 1337
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 5.0
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | 0.8271 | 1.0 | 592 | 0.6070 | 0.8562 |
66
+ | 0.4376 | 2.0 | 1184 | 0.4947 | 0.8691 |
67
+ | 0.2089 | 3.0 | 1776 | 0.4876 | 0.8747 |
68
+ | 0.0882 | 4.0 | 2368 | 0.4639 | 0.8857 |
69
+ | 0.0452 | 5.0 | 2960 | 0.4501 | 0.8913 |
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.9.0.dev0
75
+ - Pytorch 1.9.0+cu102
76
+ - Datasets 1.9.1.dev0
77
+ - Tokenizers 0.10.3
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.8912871287128713,
4
+ "eval_loss": 0.45006364583969116,
5
+ "eval_runtime": 107.735,
6
+ "eval_samples_per_second": 234.371,
7
+ "eval_steps_per_second": 1.838,
8
+ "train_loss": 0.48942885282071863,
9
+ "train_runtime": 2221.2523,
10
+ "train_samples_per_second": 170.512,
11
+ "train_steps_per_second": 1.333
12
+ }
config.json ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "finetuning_task": "image-classification",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "apple_pie",
13
+ "1": "baby_back_ribs",
14
+ "10": "bruschetta",
15
+ "100": "waffles",
16
+ "11": "caesar_salad",
17
+ "12": "cannoli",
18
+ "13": "caprese_salad",
19
+ "14": "carrot_cake",
20
+ "15": "ceviche",
21
+ "16": "cheese_plate",
22
+ "17": "cheesecake",
23
+ "18": "chicken_curry",
24
+ "19": "chicken_quesadilla",
25
+ "2": "baklava",
26
+ "20": "chicken_wings",
27
+ "21": "chocolate_cake",
28
+ "22": "chocolate_mousse",
29
+ "23": "churros",
30
+ "24": "clam_chowder",
31
+ "25": "club_sandwich",
32
+ "26": "crab_cakes",
33
+ "27": "creme_brulee",
34
+ "28": "croque_madame",
35
+ "29": "cup_cakes",
36
+ "3": "beef_carpaccio",
37
+ "30": "deviled_eggs",
38
+ "31": "donuts",
39
+ "32": "dumplings",
40
+ "33": "edamame",
41
+ "34": "eggs_benedict",
42
+ "35": "escargots",
43
+ "36": "falafel",
44
+ "37": "filet_mignon",
45
+ "38": "fish_and_chips",
46
+ "39": "foie_gras",
47
+ "4": "beef_tartare",
48
+ "40": "french_fries",
49
+ "41": "french_onion_soup",
50
+ "42": "french_toast",
51
+ "43": "fried_calamari",
52
+ "44": "fried_rice",
53
+ "45": "frozen_yogurt",
54
+ "46": "garlic_bread",
55
+ "47": "gnocchi",
56
+ "48": "greek_salad",
57
+ "49": "grilled_cheese_sandwich",
58
+ "5": "beet_salad",
59
+ "50": "grilled_salmon",
60
+ "51": "guacamole",
61
+ "52": "gyoza",
62
+ "53": "hamburger",
63
+ "54": "hot_and_sour_soup",
64
+ "55": "hot_dog",
65
+ "56": "huevos_rancheros",
66
+ "57": "hummus",
67
+ "58": "ice_cream",
68
+ "59": "lasagna",
69
+ "6": "beignets",
70
+ "60": "lobster_bisque",
71
+ "61": "lobster_roll_sandwich",
72
+ "62": "macaroni_and_cheese",
73
+ "63": "macarons",
74
+ "64": "miso_soup",
75
+ "65": "mussels",
76
+ "66": "nachos",
77
+ "67": "omelette",
78
+ "68": "onion_rings",
79
+ "69": "oysters",
80
+ "7": "bibimbap",
81
+ "70": "pad_thai",
82
+ "71": "paella",
83
+ "72": "pancakes",
84
+ "73": "panna_cotta",
85
+ "74": "peking_duck",
86
+ "75": "pho",
87
+ "76": "pizza",
88
+ "77": "pork_chop",
89
+ "78": "poutine",
90
+ "79": "prime_rib",
91
+ "8": "bread_pudding",
92
+ "80": "pulled_pork_sandwich",
93
+ "81": "ramen",
94
+ "82": "ravioli",
95
+ "83": "red_velvet_cake",
96
+ "84": "risotto",
97
+ "85": "samosa",
98
+ "86": "sashimi",
99
+ "87": "scallops",
100
+ "88": "seaweed_salad",
101
+ "89": "shrimp_and_grits",
102
+ "9": "breakfast_burrito",
103
+ "90": "spaghetti_bolognese",
104
+ "91": "spaghetti_carbonara",
105
+ "92": "spring_rolls",
106
+ "93": "steak",
107
+ "94": "strawberry_shortcake",
108
+ "95": "sushi",
109
+ "96": "tacos",
110
+ "97": "takoyaki",
111
+ "98": "tiramisu",
112
+ "99": "tuna_tartare"
113
+ },
114
+ "image_size": 224,
115
+ "initializer_range": 0.02,
116
+ "intermediate_size": 3072,
117
+ "label2id": {
118
+ "apple_pie": "0",
119
+ "baby_back_ribs": "1",
120
+ "baklava": "2",
121
+ "beef_carpaccio": "3",
122
+ "beef_tartare": "4",
123
+ "beet_salad": "5",
124
+ "beignets": "6",
125
+ "bibimbap": "7",
126
+ "bread_pudding": "8",
127
+ "breakfast_burrito": "9",
128
+ "bruschetta": "10",
129
+ "caesar_salad": "11",
130
+ "cannoli": "12",
131
+ "caprese_salad": "13",
132
+ "carrot_cake": "14",
133
+ "ceviche": "15",
134
+ "cheese_plate": "16",
135
+ "cheesecake": "17",
136
+ "chicken_curry": "18",
137
+ "chicken_quesadilla": "19",
138
+ "chicken_wings": "20",
139
+ "chocolate_cake": "21",
140
+ "chocolate_mousse": "22",
141
+ "churros": "23",
142
+ "clam_chowder": "24",
143
+ "club_sandwich": "25",
144
+ "crab_cakes": "26",
145
+ "creme_brulee": "27",
146
+ "croque_madame": "28",
147
+ "cup_cakes": "29",
148
+ "deviled_eggs": "30",
149
+ "donuts": "31",
150
+ "dumplings": "32",
151
+ "edamame": "33",
152
+ "eggs_benedict": "34",
153
+ "escargots": "35",
154
+ "falafel": "36",
155
+ "filet_mignon": "37",
156
+ "fish_and_chips": "38",
157
+ "foie_gras": "39",
158
+ "french_fries": "40",
159
+ "french_onion_soup": "41",
160
+ "french_toast": "42",
161
+ "fried_calamari": "43",
162
+ "fried_rice": "44",
163
+ "frozen_yogurt": "45",
164
+ "garlic_bread": "46",
165
+ "gnocchi": "47",
166
+ "greek_salad": "48",
167
+ "grilled_cheese_sandwich": "49",
168
+ "grilled_salmon": "50",
169
+ "guacamole": "51",
170
+ "gyoza": "52",
171
+ "hamburger": "53",
172
+ "hot_and_sour_soup": "54",
173
+ "hot_dog": "55",
174
+ "huevos_rancheros": "56",
175
+ "hummus": "57",
176
+ "ice_cream": "58",
177
+ "lasagna": "59",
178
+ "lobster_bisque": "60",
179
+ "lobster_roll_sandwich": "61",
180
+ "macaroni_and_cheese": "62",
181
+ "macarons": "63",
182
+ "miso_soup": "64",
183
+ "mussels": "65",
184
+ "nachos": "66",
185
+ "omelette": "67",
186
+ "onion_rings": "68",
187
+ "oysters": "69",
188
+ "pad_thai": "70",
189
+ "paella": "71",
190
+ "pancakes": "72",
191
+ "panna_cotta": "73",
192
+ "peking_duck": "74",
193
+ "pho": "75",
194
+ "pizza": "76",
195
+ "pork_chop": "77",
196
+ "poutine": "78",
197
+ "prime_rib": "79",
198
+ "pulled_pork_sandwich": "80",
199
+ "ramen": "81",
200
+ "ravioli": "82",
201
+ "red_velvet_cake": "83",
202
+ "risotto": "84",
203
+ "samosa": "85",
204
+ "sashimi": "86",
205
+ "scallops": "87",
206
+ "seaweed_salad": "88",
207
+ "shrimp_and_grits": "89",
208
+ "spaghetti_bolognese": "90",
209
+ "spaghetti_carbonara": "91",
210
+ "spring_rolls": "92",
211
+ "steak": "93",
212
+ "strawberry_shortcake": "94",
213
+ "sushi": "95",
214
+ "tacos": "96",
215
+ "takoyaki": "97",
216
+ "tiramisu": "98",
217
+ "tuna_tartare": "99",
218
+ "waffles": "100"
219
+ },
220
+ "layer_norm_eps": 1e-12,
221
+ "model_type": "vit",
222
+ "num_attention_heads": 12,
223
+ "num_channels": 3,
224
+ "num_hidden_layers": 12,
225
+ "patch_size": 16,
226
+ "torch_dtype": "float32",
227
+ "transformers_version": "4.9.0.dev0"
228
+ }
eval_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "eval_accuracy": 0.8912871287128713,
4
+ "eval_loss": 0.45006364583969116,
5
+ "eval_runtime": 107.735,
6
+ "eval_samples_per_second": 234.371,
7
+ "eval_steps_per_second": 1.838
8
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "ViTFeatureExtractor",
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_std": [
11
+ 0.5,
12
+ 0.5,
13
+ 0.5
14
+ ],
15
+ "resample": 2,
16
+ "size": 224
17
+ }
train_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 5.0,
3
+ "train_loss": 0.48942885282071863,
4
+ "train_runtime": 2221.2523,
5
+ "train_samples_per_second": 170.512,
6
+ "train_steps_per_second": 1.333
7
+ }
trainer_state.json ADDED
@@ -0,0 +1,958 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8912871287128713,
3
+ "best_model_checkpoint": "food101_outputs/checkpoint-2960",
4
+ "epoch": 5.0,
5
+ "global_step": 2960,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "learning_rate": 0.00019864864864864865,
13
+ "loss": 4.4083,
14
+ "step": 20
15
+ },
16
+ {
17
+ "epoch": 0.07,
18
+ "learning_rate": 0.0001972972972972973,
19
+ "loss": 3.884,
20
+ "step": 40
21
+ },
22
+ {
23
+ "epoch": 0.1,
24
+ "learning_rate": 0.00019594594594594594,
25
+ "loss": 3.4068,
26
+ "step": 60
27
+ },
28
+ {
29
+ "epoch": 0.14,
30
+ "learning_rate": 0.00019459459459459462,
31
+ "loss": 2.9784,
32
+ "step": 80
33
+ },
34
+ {
35
+ "epoch": 0.17,
36
+ "learning_rate": 0.00019324324324324326,
37
+ "loss": 2.6549,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.2,
42
+ "learning_rate": 0.0001918918918918919,
43
+ "loss": 2.3437,
44
+ "step": 120
45
+ },
46
+ {
47
+ "epoch": 0.24,
48
+ "learning_rate": 0.00019054054054054055,
49
+ "loss": 2.1107,
50
+ "step": 140
51
+ },
52
+ {
53
+ "epoch": 0.27,
54
+ "learning_rate": 0.0001891891891891892,
55
+ "loss": 1.8803,
56
+ "step": 160
57
+ },
58
+ {
59
+ "epoch": 0.3,
60
+ "learning_rate": 0.00018783783783783784,
61
+ "loss": 1.7025,
62
+ "step": 180
63
+ },
64
+ {
65
+ "epoch": 0.34,
66
+ "learning_rate": 0.0001864864864864865,
67
+ "loss": 1.5403,
68
+ "step": 200
69
+ },
70
+ {
71
+ "epoch": 0.37,
72
+ "learning_rate": 0.00018513513513513513,
73
+ "loss": 1.48,
74
+ "step": 220
75
+ },
76
+ {
77
+ "epoch": 0.41,
78
+ "learning_rate": 0.0001837837837837838,
79
+ "loss": 1.358,
80
+ "step": 240
81
+ },
82
+ {
83
+ "epoch": 0.44,
84
+ "learning_rate": 0.00018243243243243245,
85
+ "loss": 1.2943,
86
+ "step": 260
87
+ },
88
+ {
89
+ "epoch": 0.47,
90
+ "learning_rate": 0.0001810810810810811,
91
+ "loss": 1.2301,
92
+ "step": 280
93
+ },
94
+ {
95
+ "epoch": 0.51,
96
+ "learning_rate": 0.00017972972972972974,
97
+ "loss": 1.1578,
98
+ "step": 300
99
+ },
100
+ {
101
+ "epoch": 0.54,
102
+ "learning_rate": 0.00017837837837837839,
103
+ "loss": 1.0811,
104
+ "step": 320
105
+ },
106
+ {
107
+ "epoch": 0.57,
108
+ "learning_rate": 0.00017702702702702703,
109
+ "loss": 1.0662,
110
+ "step": 340
111
+ },
112
+ {
113
+ "epoch": 0.61,
114
+ "learning_rate": 0.00017567567567567568,
115
+ "loss": 1.0146,
116
+ "step": 360
117
+ },
118
+ {
119
+ "epoch": 0.64,
120
+ "learning_rate": 0.00017432432432432432,
121
+ "loss": 0.9584,
122
+ "step": 380
123
+ },
124
+ {
125
+ "epoch": 0.68,
126
+ "learning_rate": 0.000172972972972973,
127
+ "loss": 0.973,
128
+ "step": 400
129
+ },
130
+ {
131
+ "epoch": 0.71,
132
+ "learning_rate": 0.00017162162162162164,
133
+ "loss": 0.9817,
134
+ "step": 420
135
+ },
136
+ {
137
+ "epoch": 0.74,
138
+ "learning_rate": 0.00017027027027027028,
139
+ "loss": 0.9552,
140
+ "step": 440
141
+ },
142
+ {
143
+ "epoch": 0.78,
144
+ "learning_rate": 0.00016891891891891893,
145
+ "loss": 0.916,
146
+ "step": 460
147
+ },
148
+ {
149
+ "epoch": 0.81,
150
+ "learning_rate": 0.00016756756756756757,
151
+ "loss": 0.8896,
152
+ "step": 480
153
+ },
154
+ {
155
+ "epoch": 0.84,
156
+ "learning_rate": 0.00016621621621621622,
157
+ "loss": 0.8855,
158
+ "step": 500
159
+ },
160
+ {
161
+ "epoch": 0.88,
162
+ "learning_rate": 0.00016486486486486486,
163
+ "loss": 0.8823,
164
+ "step": 520
165
+ },
166
+ {
167
+ "epoch": 0.91,
168
+ "learning_rate": 0.0001635135135135135,
169
+ "loss": 0.8059,
170
+ "step": 540
171
+ },
172
+ {
173
+ "epoch": 0.95,
174
+ "learning_rate": 0.00016216216216216218,
175
+ "loss": 0.8323,
176
+ "step": 560
177
+ },
178
+ {
179
+ "epoch": 0.98,
180
+ "learning_rate": 0.00016081081081081083,
181
+ "loss": 0.8271,
182
+ "step": 580
183
+ },
184
+ {
185
+ "epoch": 1.0,
186
+ "eval_accuracy": 0.8561584158415841,
187
+ "eval_loss": 0.6070069074630737,
188
+ "eval_runtime": 142.5311,
189
+ "eval_samples_per_second": 177.154,
190
+ "eval_steps_per_second": 1.389,
191
+ "step": 592
192
+ },
193
+ {
194
+ "epoch": 1.01,
195
+ "learning_rate": 0.00015945945945945947,
196
+ "loss": 0.6876,
197
+ "step": 600
198
+ },
199
+ {
200
+ "epoch": 1.05,
201
+ "learning_rate": 0.00015810810810810812,
202
+ "loss": 0.4771,
203
+ "step": 620
204
+ },
205
+ {
206
+ "epoch": 1.08,
207
+ "learning_rate": 0.00015675675675675676,
208
+ "loss": 0.4998,
209
+ "step": 640
210
+ },
211
+ {
212
+ "epoch": 1.11,
213
+ "learning_rate": 0.0001554054054054054,
214
+ "loss": 0.4753,
215
+ "step": 660
216
+ },
217
+ {
218
+ "epoch": 1.15,
219
+ "learning_rate": 0.00015405405405405405,
220
+ "loss": 0.5197,
221
+ "step": 680
222
+ },
223
+ {
224
+ "epoch": 1.18,
225
+ "learning_rate": 0.0001527027027027027,
226
+ "loss": 0.527,
227
+ "step": 700
228
+ },
229
+ {
230
+ "epoch": 1.22,
231
+ "learning_rate": 0.00015135135135135137,
232
+ "loss": 0.5371,
233
+ "step": 720
234
+ },
235
+ {
236
+ "epoch": 1.25,
237
+ "learning_rate": 0.00015000000000000001,
238
+ "loss": 0.4992,
239
+ "step": 740
240
+ },
241
+ {
242
+ "epoch": 1.28,
243
+ "learning_rate": 0.00014864864864864866,
244
+ "loss": 0.4728,
245
+ "step": 760
246
+ },
247
+ {
248
+ "epoch": 1.32,
249
+ "learning_rate": 0.0001472972972972973,
250
+ "loss": 0.5185,
251
+ "step": 780
252
+ },
253
+ {
254
+ "epoch": 1.35,
255
+ "learning_rate": 0.00014594594594594595,
256
+ "loss": 0.5071,
257
+ "step": 800
258
+ },
259
+ {
260
+ "epoch": 1.39,
261
+ "learning_rate": 0.00014459459459459462,
262
+ "loss": 0.4728,
263
+ "step": 820
264
+ },
265
+ {
266
+ "epoch": 1.42,
267
+ "learning_rate": 0.00014324324324324324,
268
+ "loss": 0.4731,
269
+ "step": 840
270
+ },
271
+ {
272
+ "epoch": 1.45,
273
+ "learning_rate": 0.00014189189189189188,
274
+ "loss": 0.5211,
275
+ "step": 860
276
+ },
277
+ {
278
+ "epoch": 1.49,
279
+ "learning_rate": 0.00014054054054054056,
280
+ "loss": 0.4949,
281
+ "step": 880
282
+ },
283
+ {
284
+ "epoch": 1.52,
285
+ "learning_rate": 0.0001391891891891892,
286
+ "loss": 0.4847,
287
+ "step": 900
288
+ },
289
+ {
290
+ "epoch": 1.55,
291
+ "learning_rate": 0.00013783783783783785,
292
+ "loss": 0.4626,
293
+ "step": 920
294
+ },
295
+ {
296
+ "epoch": 1.59,
297
+ "learning_rate": 0.0001364864864864865,
298
+ "loss": 0.456,
299
+ "step": 940
300
+ },
301
+ {
302
+ "epoch": 1.62,
303
+ "learning_rate": 0.00013513513513513514,
304
+ "loss": 0.4938,
305
+ "step": 960
306
+ },
307
+ {
308
+ "epoch": 1.66,
309
+ "learning_rate": 0.0001337837837837838,
310
+ "loss": 0.4846,
311
+ "step": 980
312
+ },
313
+ {
314
+ "epoch": 1.69,
315
+ "learning_rate": 0.00013243243243243243,
316
+ "loss": 0.4576,
317
+ "step": 1000
318
+ },
319
+ {
320
+ "epoch": 1.72,
321
+ "learning_rate": 0.00013108108108108107,
322
+ "loss": 0.4766,
323
+ "step": 1020
324
+ },
325
+ {
326
+ "epoch": 1.76,
327
+ "learning_rate": 0.00012972972972972974,
328
+ "loss": 0.4741,
329
+ "step": 1040
330
+ },
331
+ {
332
+ "epoch": 1.79,
333
+ "learning_rate": 0.0001283783783783784,
334
+ "loss": 0.4225,
335
+ "step": 1060
336
+ },
337
+ {
338
+ "epoch": 1.82,
339
+ "learning_rate": 0.00012702702702702703,
340
+ "loss": 0.4201,
341
+ "step": 1080
342
+ },
343
+ {
344
+ "epoch": 1.86,
345
+ "learning_rate": 0.00012567567567567568,
346
+ "loss": 0.4327,
347
+ "step": 1100
348
+ },
349
+ {
350
+ "epoch": 1.89,
351
+ "learning_rate": 0.00012432432432432433,
352
+ "loss": 0.4771,
353
+ "step": 1120
354
+ },
355
+ {
356
+ "epoch": 1.93,
357
+ "learning_rate": 0.000122972972972973,
358
+ "loss": 0.4473,
359
+ "step": 1140
360
+ },
361
+ {
362
+ "epoch": 1.96,
363
+ "learning_rate": 0.00012162162162162163,
364
+ "loss": 0.4569,
365
+ "step": 1160
366
+ },
367
+ {
368
+ "epoch": 1.99,
369
+ "learning_rate": 0.00012027027027027027,
370
+ "loss": 0.4376,
371
+ "step": 1180
372
+ },
373
+ {
374
+ "epoch": 2.0,
375
+ "eval_accuracy": 0.8691485148514851,
376
+ "eval_loss": 0.4947212338447571,
377
+ "eval_runtime": 107.3521,
378
+ "eval_samples_per_second": 235.207,
379
+ "eval_steps_per_second": 1.844,
380
+ "step": 1184
381
+ },
382
+ {
383
+ "epoch": 2.03,
384
+ "learning_rate": 0.00011891891891891893,
385
+ "loss": 0.2526,
386
+ "step": 1200
387
+ },
388
+ {
389
+ "epoch": 2.06,
390
+ "learning_rate": 0.00011756756756756758,
391
+ "loss": 0.2468,
392
+ "step": 1220
393
+ },
394
+ {
395
+ "epoch": 2.09,
396
+ "learning_rate": 0.00011621621621621621,
397
+ "loss": 0.2298,
398
+ "step": 1240
399
+ },
400
+ {
401
+ "epoch": 2.13,
402
+ "learning_rate": 0.00011486486486486487,
403
+ "loss": 0.2294,
404
+ "step": 1260
405
+ },
406
+ {
407
+ "epoch": 2.16,
408
+ "learning_rate": 0.00011351351351351351,
409
+ "loss": 0.2408,
410
+ "step": 1280
411
+ },
412
+ {
413
+ "epoch": 2.2,
414
+ "learning_rate": 0.00011216216216216217,
415
+ "loss": 0.2245,
416
+ "step": 1300
417
+ },
418
+ {
419
+ "epoch": 2.23,
420
+ "learning_rate": 0.00011081081081081082,
421
+ "loss": 0.2391,
422
+ "step": 1320
423
+ },
424
+ {
425
+ "epoch": 2.26,
426
+ "learning_rate": 0.00010945945945945946,
427
+ "loss": 0.241,
428
+ "step": 1340
429
+ },
430
+ {
431
+ "epoch": 2.3,
432
+ "learning_rate": 0.00010810810810810812,
433
+ "loss": 0.2197,
434
+ "step": 1360
435
+ },
436
+ {
437
+ "epoch": 2.33,
438
+ "learning_rate": 0.00010675675675675677,
439
+ "loss": 0.2467,
440
+ "step": 1380
441
+ },
442
+ {
443
+ "epoch": 2.36,
444
+ "learning_rate": 0.0001054054054054054,
445
+ "loss": 0.2397,
446
+ "step": 1400
447
+ },
448
+ {
449
+ "epoch": 2.4,
450
+ "learning_rate": 0.00010405405405405406,
451
+ "loss": 0.2308,
452
+ "step": 1420
453
+ },
454
+ {
455
+ "epoch": 2.43,
456
+ "learning_rate": 0.0001027027027027027,
457
+ "loss": 0.25,
458
+ "step": 1440
459
+ },
460
+ {
461
+ "epoch": 2.47,
462
+ "learning_rate": 0.00010135135135135136,
463
+ "loss": 0.2291,
464
+ "step": 1460
465
+ },
466
+ {
467
+ "epoch": 2.5,
468
+ "learning_rate": 0.0001,
469
+ "loss": 0.2496,
470
+ "step": 1480
471
+ },
472
+ {
473
+ "epoch": 2.53,
474
+ "learning_rate": 9.864864864864865e-05,
475
+ "loss": 0.2322,
476
+ "step": 1500
477
+ },
478
+ {
479
+ "epoch": 2.57,
480
+ "learning_rate": 9.729729729729731e-05,
481
+ "loss": 0.2266,
482
+ "step": 1520
483
+ },
484
+ {
485
+ "epoch": 2.6,
486
+ "learning_rate": 9.594594594594595e-05,
487
+ "loss": 0.2201,
488
+ "step": 1540
489
+ },
490
+ {
491
+ "epoch": 2.64,
492
+ "learning_rate": 9.45945945945946e-05,
493
+ "loss": 0.2497,
494
+ "step": 1560
495
+ },
496
+ {
497
+ "epoch": 2.67,
498
+ "learning_rate": 9.324324324324324e-05,
499
+ "loss": 0.2276,
500
+ "step": 1580
501
+ },
502
+ {
503
+ "epoch": 2.7,
504
+ "learning_rate": 9.18918918918919e-05,
505
+ "loss": 0.1945,
506
+ "step": 1600
507
+ },
508
+ {
509
+ "epoch": 2.74,
510
+ "learning_rate": 9.054054054054055e-05,
511
+ "loss": 0.2174,
512
+ "step": 1620
513
+ },
514
+ {
515
+ "epoch": 2.77,
516
+ "learning_rate": 8.918918918918919e-05,
517
+ "loss": 0.2423,
518
+ "step": 1640
519
+ },
520
+ {
521
+ "epoch": 2.8,
522
+ "learning_rate": 8.783783783783784e-05,
523
+ "loss": 0.2242,
524
+ "step": 1660
525
+ },
526
+ {
527
+ "epoch": 2.84,
528
+ "learning_rate": 8.64864864864865e-05,
529
+ "loss": 0.2383,
530
+ "step": 1680
531
+ },
532
+ {
533
+ "epoch": 2.87,
534
+ "learning_rate": 8.513513513513514e-05,
535
+ "loss": 0.2582,
536
+ "step": 1700
537
+ },
538
+ {
539
+ "epoch": 2.91,
540
+ "learning_rate": 8.378378378378379e-05,
541
+ "loss": 0.2125,
542
+ "step": 1720
543
+ },
544
+ {
545
+ "epoch": 2.94,
546
+ "learning_rate": 8.243243243243243e-05,
547
+ "loss": 0.2307,
548
+ "step": 1740
549
+ },
550
+ {
551
+ "epoch": 2.97,
552
+ "learning_rate": 8.108108108108109e-05,
553
+ "loss": 0.2089,
554
+ "step": 1760
555
+ },
556
+ {
557
+ "epoch": 3.0,
558
+ "eval_accuracy": 0.8746930693069307,
559
+ "eval_loss": 0.48760801553726196,
560
+ "eval_runtime": 106.972,
561
+ "eval_samples_per_second": 236.043,
562
+ "eval_steps_per_second": 1.851,
563
+ "step": 1776
564
+ },
565
+ {
566
+ "epoch": 3.01,
567
+ "learning_rate": 7.972972972972974e-05,
568
+ "loss": 0.1821,
569
+ "step": 1780
570
+ },
571
+ {
572
+ "epoch": 3.04,
573
+ "learning_rate": 7.837837837837838e-05,
574
+ "loss": 0.1332,
575
+ "step": 1800
576
+ },
577
+ {
578
+ "epoch": 3.07,
579
+ "learning_rate": 7.702702702702703e-05,
580
+ "loss": 0.116,
581
+ "step": 1820
582
+ },
583
+ {
584
+ "epoch": 3.11,
585
+ "learning_rate": 7.567567567567568e-05,
586
+ "loss": 0.119,
587
+ "step": 1840
588
+ },
589
+ {
590
+ "epoch": 3.14,
591
+ "learning_rate": 7.432432432432433e-05,
592
+ "loss": 0.1222,
593
+ "step": 1860
594
+ },
595
+ {
596
+ "epoch": 3.18,
597
+ "learning_rate": 7.297297297297297e-05,
598
+ "loss": 0.118,
599
+ "step": 1880
600
+ },
601
+ {
602
+ "epoch": 3.21,
603
+ "learning_rate": 7.162162162162162e-05,
604
+ "loss": 0.1078,
605
+ "step": 1900
606
+ },
607
+ {
608
+ "epoch": 3.24,
609
+ "learning_rate": 7.027027027027028e-05,
610
+ "loss": 0.0982,
611
+ "step": 1920
612
+ },
613
+ {
614
+ "epoch": 3.28,
615
+ "learning_rate": 6.891891891891892e-05,
616
+ "loss": 0.1056,
617
+ "step": 1940
618
+ },
619
+ {
620
+ "epoch": 3.31,
621
+ "learning_rate": 6.756756756756757e-05,
622
+ "loss": 0.099,
623
+ "step": 1960
624
+ },
625
+ {
626
+ "epoch": 3.34,
627
+ "learning_rate": 6.621621621621621e-05,
628
+ "loss": 0.0961,
629
+ "step": 1980
630
+ },
631
+ {
632
+ "epoch": 3.38,
633
+ "learning_rate": 6.486486486486487e-05,
634
+ "loss": 0.1051,
635
+ "step": 2000
636
+ },
637
+ {
638
+ "epoch": 3.41,
639
+ "learning_rate": 6.358108108108109e-05,
640
+ "loss": 0.1161,
641
+ "step": 2020
642
+ },
643
+ {
644
+ "epoch": 3.45,
645
+ "learning_rate": 6.222972972972973e-05,
646
+ "loss": 0.0919,
647
+ "step": 2040
648
+ },
649
+ {
650
+ "epoch": 3.48,
651
+ "learning_rate": 6.087837837837839e-05,
652
+ "loss": 0.1181,
653
+ "step": 2060
654
+ },
655
+ {
656
+ "epoch": 3.51,
657
+ "learning_rate": 5.952702702702703e-05,
658
+ "loss": 0.1215,
659
+ "step": 2080
660
+ },
661
+ {
662
+ "epoch": 3.55,
663
+ "learning_rate": 5.817567567567568e-05,
664
+ "loss": 0.0959,
665
+ "step": 2100
666
+ },
667
+ {
668
+ "epoch": 3.58,
669
+ "learning_rate": 5.682432432432433e-05,
670
+ "loss": 0.0866,
671
+ "step": 2120
672
+ },
673
+ {
674
+ "epoch": 3.61,
675
+ "learning_rate": 5.547297297297298e-05,
676
+ "loss": 0.117,
677
+ "step": 2140
678
+ },
679
+ {
680
+ "epoch": 3.65,
681
+ "learning_rate": 5.412162162162162e-05,
682
+ "loss": 0.1063,
683
+ "step": 2160
684
+ },
685
+ {
686
+ "epoch": 3.68,
687
+ "learning_rate": 5.277027027027027e-05,
688
+ "loss": 0.0993,
689
+ "step": 2180
690
+ },
691
+ {
692
+ "epoch": 3.72,
693
+ "learning_rate": 5.1418918918918925e-05,
694
+ "loss": 0.1057,
695
+ "step": 2200
696
+ },
697
+ {
698
+ "epoch": 3.75,
699
+ "learning_rate": 5.006756756756758e-05,
700
+ "loss": 0.1194,
701
+ "step": 2220
702
+ },
703
+ {
704
+ "epoch": 3.78,
705
+ "learning_rate": 4.871621621621622e-05,
706
+ "loss": 0.0929,
707
+ "step": 2240
708
+ },
709
+ {
710
+ "epoch": 3.82,
711
+ "learning_rate": 4.736486486486487e-05,
712
+ "loss": 0.08,
713
+ "step": 2260
714
+ },
715
+ {
716
+ "epoch": 3.85,
717
+ "learning_rate": 4.601351351351352e-05,
718
+ "loss": 0.1133,
719
+ "step": 2280
720
+ },
721
+ {
722
+ "epoch": 3.89,
723
+ "learning_rate": 4.4662162162162164e-05,
724
+ "loss": 0.0996,
725
+ "step": 2300
726
+ },
727
+ {
728
+ "epoch": 3.92,
729
+ "learning_rate": 4.3310810810810816e-05,
730
+ "loss": 0.0992,
731
+ "step": 2320
732
+ },
733
+ {
734
+ "epoch": 3.95,
735
+ "learning_rate": 4.195945945945946e-05,
736
+ "loss": 0.0941,
737
+ "step": 2340
738
+ },
739
+ {
740
+ "epoch": 3.99,
741
+ "learning_rate": 4.060810810810811e-05,
742
+ "loss": 0.0882,
743
+ "step": 2360
744
+ },
745
+ {
746
+ "epoch": 4.0,
747
+ "eval_accuracy": 0.8856633663366337,
748
+ "eval_loss": 0.463856965303421,
749
+ "eval_runtime": 107.2753,
750
+ "eval_samples_per_second": 235.376,
751
+ "eval_steps_per_second": 1.846,
752
+ "step": 2368
753
+ },
754
+ {
755
+ "epoch": 4.02,
756
+ "learning_rate": 3.925675675675676e-05,
757
+ "loss": 0.0796,
758
+ "step": 2380
759
+ },
760
+ {
761
+ "epoch": 4.05,
762
+ "learning_rate": 3.790540540540541e-05,
763
+ "loss": 0.0353,
764
+ "step": 2400
765
+ },
766
+ {
767
+ "epoch": 4.09,
768
+ "learning_rate": 3.6554054054054055e-05,
769
+ "loss": 0.0536,
770
+ "step": 2420
771
+ },
772
+ {
773
+ "epoch": 4.12,
774
+ "learning_rate": 3.520270270270271e-05,
775
+ "loss": 0.0564,
776
+ "step": 2440
777
+ },
778
+ {
779
+ "epoch": 4.16,
780
+ "learning_rate": 3.385135135135135e-05,
781
+ "loss": 0.0506,
782
+ "step": 2460
783
+ },
784
+ {
785
+ "epoch": 4.19,
786
+ "learning_rate": 3.2500000000000004e-05,
787
+ "loss": 0.0547,
788
+ "step": 2480
789
+ },
790
+ {
791
+ "epoch": 4.22,
792
+ "learning_rate": 3.114864864864865e-05,
793
+ "loss": 0.0462,
794
+ "step": 2500
795
+ },
796
+ {
797
+ "epoch": 4.26,
798
+ "learning_rate": 2.97972972972973e-05,
799
+ "loss": 0.0501,
800
+ "step": 2520
801
+ },
802
+ {
803
+ "epoch": 4.29,
804
+ "learning_rate": 2.8445945945945946e-05,
805
+ "loss": 0.0588,
806
+ "step": 2540
807
+ },
808
+ {
809
+ "epoch": 4.32,
810
+ "learning_rate": 2.7094594594594598e-05,
811
+ "loss": 0.0303,
812
+ "step": 2560
813
+ },
814
+ {
815
+ "epoch": 4.36,
816
+ "learning_rate": 2.5743243243243243e-05,
817
+ "loss": 0.0411,
818
+ "step": 2580
819
+ },
820
+ {
821
+ "epoch": 4.39,
822
+ "learning_rate": 2.4391891891891895e-05,
823
+ "loss": 0.0406,
824
+ "step": 2600
825
+ },
826
+ {
827
+ "epoch": 4.43,
828
+ "learning_rate": 2.3040540540540543e-05,
829
+ "loss": 0.0378,
830
+ "step": 2620
831
+ },
832
+ {
833
+ "epoch": 4.46,
834
+ "learning_rate": 2.1689189189189192e-05,
835
+ "loss": 0.0391,
836
+ "step": 2640
837
+ },
838
+ {
839
+ "epoch": 4.49,
840
+ "learning_rate": 2.033783783783784e-05,
841
+ "loss": 0.038,
842
+ "step": 2660
843
+ },
844
+ {
845
+ "epoch": 4.53,
846
+ "learning_rate": 1.898648648648649e-05,
847
+ "loss": 0.0443,
848
+ "step": 2680
849
+ },
850
+ {
851
+ "epoch": 4.56,
852
+ "learning_rate": 1.7635135135135137e-05,
853
+ "loss": 0.0391,
854
+ "step": 2700
855
+ },
856
+ {
857
+ "epoch": 4.59,
858
+ "learning_rate": 1.6283783783783786e-05,
859
+ "loss": 0.0439,
860
+ "step": 2720
861
+ },
862
+ {
863
+ "epoch": 4.63,
864
+ "learning_rate": 1.4932432432432433e-05,
865
+ "loss": 0.0532,
866
+ "step": 2740
867
+ },
868
+ {
869
+ "epoch": 4.66,
870
+ "learning_rate": 1.3581081081081081e-05,
871
+ "loss": 0.0395,
872
+ "step": 2760
873
+ },
874
+ {
875
+ "epoch": 4.7,
876
+ "learning_rate": 1.222972972972973e-05,
877
+ "loss": 0.0458,
878
+ "step": 2780
879
+ },
880
+ {
881
+ "epoch": 4.73,
882
+ "learning_rate": 1.0878378378378378e-05,
883
+ "loss": 0.0588,
884
+ "step": 2800
885
+ },
886
+ {
887
+ "epoch": 4.76,
888
+ "learning_rate": 9.527027027027027e-06,
889
+ "loss": 0.0465,
890
+ "step": 2820
891
+ },
892
+ {
893
+ "epoch": 4.8,
894
+ "learning_rate": 8.175675675675675e-06,
895
+ "loss": 0.036,
896
+ "step": 2840
897
+ },
898
+ {
899
+ "epoch": 4.83,
900
+ "learning_rate": 6.8243243243243244e-06,
901
+ "loss": 0.0437,
902
+ "step": 2860
903
+ },
904
+ {
905
+ "epoch": 4.86,
906
+ "learning_rate": 5.472972972972974e-06,
907
+ "loss": 0.0487,
908
+ "step": 2880
909
+ },
910
+ {
911
+ "epoch": 4.9,
912
+ "learning_rate": 4.121621621621622e-06,
913
+ "loss": 0.0273,
914
+ "step": 2900
915
+ },
916
+ {
917
+ "epoch": 4.93,
918
+ "learning_rate": 2.7702702702702708e-06,
919
+ "loss": 0.0392,
920
+ "step": 2920
921
+ },
922
+ {
923
+ "epoch": 4.97,
924
+ "learning_rate": 1.418918918918919e-06,
925
+ "loss": 0.0458,
926
+ "step": 2940
927
+ },
928
+ {
929
+ "epoch": 5.0,
930
+ "learning_rate": 6.756756756756757e-08,
931
+ "loss": 0.0452,
932
+ "step": 2960
933
+ },
934
+ {
935
+ "epoch": 5.0,
936
+ "eval_accuracy": 0.8912871287128713,
937
+ "eval_loss": 0.45006364583969116,
938
+ "eval_runtime": 106.893,
939
+ "eval_samples_per_second": 236.218,
940
+ "eval_steps_per_second": 1.852,
941
+ "step": 2960
942
+ },
943
+ {
944
+ "epoch": 5.0,
945
+ "step": 2960,
946
+ "total_flos": 0.0,
947
+ "train_loss": 0.48942885282071863,
948
+ "train_runtime": 2221.2523,
949
+ "train_samples_per_second": 170.512,
950
+ "train_steps_per_second": 1.333
951
+ }
952
+ ],
953
+ "max_steps": 2960,
954
+ "num_train_epochs": 5,
955
+ "total_flos": 0.0,
956
+ "trial_name": null,
957
+ "trial_params": null
958
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:854337aa979b4d66fa7b7c37eeeed817ea454fd96fce3eeddd27799e56c2a3d1
3
+ size 2671