--- library_name: peft base_model: peiyi9979/math-shepherd-mistral-7b-prm tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: v3d_mistral_lora results: [] --- # v3d_mistral_lora This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co./peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3848 - Accuracy: 0.8329 - Precision: 0.7398 - Recall: 0.4527 - F1: 0.5617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 765837 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0 | 0 | 0.6112 | 0.7506 | 0.3659 | 0.0746 | 0.1240 | | 0.5265 | 0.0532 | 20 | 0.6081 | 0.7647 | 0.5455 | 0.0299 | 0.0566 | | 0.4127 | 0.1064 | 40 | 0.5412 | 0.7682 | 0.7 | 0.0348 | 0.0664 | | 0.3347 | 0.1596 | 60 | 0.5020 | 0.7741 | 0.7368 | 0.0697 | 0.1273 | | 0.3077 | 0.2128 | 80 | 0.4463 | 0.7965 | 0.6944 | 0.2488 | 0.3663 | | 0.307 | 0.2660 | 100 | 0.4498 | 0.8 | 0.6782 | 0.2935 | 0.4097 | | 0.2413 | 0.3191 | 120 | 0.4316 | 0.8141 | 0.7087 | 0.3632 | 0.4803 | | 0.326 | 0.3723 | 140 | 0.4107 | 0.8235 | 0.7257 | 0.4080 | 0.5223 | | 0.2404 | 0.4255 | 160 | 0.4615 | 0.8094 | 0.7671 | 0.2786 | 0.4088 | | 0.2962 | 0.4787 | 180 | 0.4205 | 0.8282 | 0.7619 | 0.3980 | 0.5229 | | 0.2727 | 0.5319 | 200 | 0.4830 | 0.8 | 0.7627 | 0.2239 | 0.3462 | | 0.2844 | 0.5851 | 220 | 0.4187 | 0.8259 | 0.7524 | 0.3930 | 0.5163 | | 0.2632 | 0.6383 | 240 | 0.4037 | 0.8235 | 0.7339 | 0.3980 | 0.5161 | | 0.2499 | 0.6915 | 260 | 0.3885 | 0.8247 | 0.7241 | 0.4179 | 0.5300 | | 0.2121 | 0.7447 | 280 | 0.3953 | 0.8224 | 0.7232 | 0.4030 | 0.5176 | | 0.2704 | 0.7979 | 300 | 0.3849 | 0.8329 | 0.736 | 0.4577 | 0.5644 | | 0.2333 | 0.8511 | 320 | 0.3878 | 0.8318 | 0.7417 | 0.4428 | 0.5545 | | 0.2896 | 0.9043 | 340 | 0.3886 | 0.8306 | 0.7395 | 0.4378 | 0.55 | | 0.2398 | 0.9574 | 360 | 0.3848 | 0.8329 | 0.7398 | 0.4527 | 0.5617 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3