--- base_model: mlabonne/Beyonder-4x7B-v2 language: - en library_name: transformers license: other license_link: https://huggingface.co./WizardLM/WizardMath-7B-V1.1/resolve/main/LICENSE license_name: microsoft-research-license quantized_by: mradermacher tags: - moe - merge - mergekit - Mistral - openchat/openchat-3.5-1210 - beowolx/CodeNinja-1.0-OpenChat-7B - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 --- ## About static quants of https://huggingface.co./mlabonne/Beyonder-4x7B-v2 weighted/imatrix quants are available at https://huggingface.co./mradermacher/Beyonder-4x7B-v2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q2_K.gguf) | Q2_K | 8.9 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q3_K_M.gguf) | Q3_K_M | 11.7 | lower quality | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q3_K_L.gguf) | Q3_K_L | 12.6 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.IQ4_XS.gguf) | IQ4_XS | 13.1 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q4_K_S.gguf) | Q4_K_S | 13.8 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q4_K_M.gguf) | Q4_K_M | 14.7 | fast, recommended | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q5_K_S.gguf) | Q5_K_S | 16.7 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q5_K_M.gguf) | Q5_K_M | 17.2 | | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q6_K.gguf) | Q6_K | 19.9 | very good quality | | [GGUF](https://huggingface.co./mradermacher/Beyonder-4x7B-v2-GGUF/resolve/main/Beyonder-4x7B-v2.Q8_0.gguf) | Q8_0 | 25.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co./nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.