--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/ovjr83to) # segformer-b1-finetuned-segments-pv_v1_normalized_t4_4batch This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co./nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0107 - Mean Iou: 0.8767 - Precision: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:| | 0.0061 | 0.9935 | 114 | 0.0077 | 0.7881 | 0.8686 | | 0.0043 | 1.9956 | 229 | 0.0063 | 0.8084 | 0.8541 | | 0.0051 | 2.9978 | 344 | 0.0052 | 0.8338 | 0.9445 | | 0.0141 | 4.0 | 459 | 0.0054 | 0.8421 | 0.8811 | | 0.0043 | 4.9935 | 573 | 0.0052 | 0.8414 | 0.9099 | | 0.0027 | 5.9956 | 688 | 0.0057 | 0.8450 | 0.8967 | | 0.0054 | 6.9978 | 803 | 0.0052 | 0.8505 | 0.9364 | | 0.0024 | 8.0 | 918 | 0.0064 | 0.8408 | 0.9001 | | 0.0024 | 8.9935 | 1032 | 0.0068 | 0.8378 | 0.9158 | | 0.0033 | 9.9956 | 1147 | 0.0055 | 0.8643 | 0.9156 | | 0.0014 | 10.9978 | 1262 | 0.0055 | 0.8611 | 0.9048 | | 0.0019 | 12.0 | 1377 | 0.0070 | 0.8410 | 0.8900 | | 0.0025 | 12.9935 | 1491 | 0.0060 | 0.8629 | 0.9112 | | 0.0018 | 13.9956 | 1606 | 0.0063 | 0.8577 | 0.9294 | | 0.002 | 14.9978 | 1721 | 0.0063 | 0.8539 | 0.8888 | | 0.002 | 16.0 | 1836 | 0.0072 | 0.8598 | 0.9172 | | 0.0021 | 16.9935 | 1950 | 0.0062 | 0.8555 | 0.9074 | | 0.0018 | 17.9956 | 2065 | 0.0069 | 0.8598 | 0.9167 | | 0.0018 | 18.9978 | 2180 | 0.0074 | 0.8556 | 0.9160 | | 0.002 | 20.0 | 2295 | 0.0067 | 0.8662 | 0.9117 | | 0.003 | 20.9935 | 2409 | 0.0062 | 0.8724 | 0.9245 | | 0.0027 | 21.9956 | 2524 | 0.0067 | 0.8727 | 0.9124 | | 0.0013 | 22.9978 | 2639 | 0.0068 | 0.8684 | 0.9147 | | 0.0011 | 24.0 | 2754 | 0.0070 | 0.8723 | 0.9165 | | 0.0014 | 24.9935 | 2868 | 0.0074 | 0.8709 | 0.9257 | | 0.0011 | 25.9956 | 2983 | 0.0075 | 0.8697 | 0.9139 | | 0.001 | 26.9978 | 3098 | 0.0071 | 0.8780 | 0.9273 | | 0.0011 | 28.0 | 3213 | 0.0075 | 0.8743 | 0.9182 | | 0.0008 | 28.9935 | 3327 | 0.0080 | 0.8744 | 0.9234 | | 0.0007 | 29.9956 | 3442 | 0.0086 | 0.8692 | 0.9205 | | 0.001 | 30.9978 | 3557 | 0.0083 | 0.8720 | 0.9145 | | 0.0009 | 32.0 | 3672 | 0.0084 | 0.8745 | 0.9167 | | 0.0009 | 32.9935 | 3786 | 0.0084 | 0.8717 | 0.9155 | | 0.0011 | 33.9956 | 3901 | 0.0084 | 0.8756 | 0.9279 | | 0.0007 | 34.9978 | 4016 | 0.0090 | 0.8777 | 0.9233 | | 0.0008 | 36.0 | 4131 | 0.0090 | 0.8744 | 0.9173 | | 0.0011 | 36.9935 | 4245 | 0.0097 | 0.8753 | 0.9192 | | 0.0008 | 37.9956 | 4360 | 0.0091 | 0.8757 | 0.9260 | | 0.0009 | 38.9978 | 4475 | 0.0091 | 0.8739 | 0.9173 | | 0.0008 | 40.0 | 4590 | 0.0103 | 0.8760 | 0.9274 | | 0.0008 | 40.9935 | 4704 | 0.0106 | 0.8749 | 0.9263 | | 0.0008 | 41.9956 | 4819 | 0.0097 | 0.8753 | 0.9238 | | 0.0009 | 42.9978 | 4934 | 0.0099 | 0.8730 | 0.9159 | | 0.0006 | 44.0 | 5049 | 0.0101 | 0.8757 | 0.9247 | | 0.0006 | 44.9935 | 5163 | 0.0104 | 0.8756 | 0.9217 | | 0.0007 | 45.9956 | 5278 | 0.0106 | 0.8720 | 0.9175 | | 0.0006 | 46.9978 | 5393 | 0.0107 | 0.8753 | 0.9202 | | 0.0005 | 48.0 | 5508 | 0.0107 | 0.8757 | 0.9224 | | 0.0007 | 48.9935 | 5622 | 0.0107 | 0.8764 | 0.9227 | | 0.0008 | 49.6732 | 5700 | 0.0107 | 0.8767 | 0.9236 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1