--- license: apache-2.0 tags: - moe train: false inference: false pipeline_tag: text-generation --- ## Mixtral-8x7B-v0.1-hf-attn-4bit-moe-2bit-HQQ This is a version of the Mixtral-8x7B-v0.1 model (https://huggingface.co./mistralai/Mixtral-8x7B-v0.1) quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit. This simple change yields a huge improvement in perplexity vs the all 2-bit model (4.69 vs. 5.90) for a slight increase in model size (18.2GB vs. 18GB). This idea was suggest by Artem Eliseev (@lavawolfiee) and Denis Mazur (@dvmazur) [in this Github discussion](https://github.com/mobiusml/hqq/issues/2). ### Basic Usage To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows: ``` Python model_id = 'mobiuslabsgmbh/Mixtral-8x7B-v0.1-hf-attn-4bit-moe-2bit-HQQ' #Load the model from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = HQQModelForCausalLM.from_quantized(model_id) #Optional from hqq.core.quantize import * HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) ``` ### Quantization You can reproduce the model using the following quant configs: ``` Python from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-v0.1" model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) #Quantize params from hqq.core.quantize import * attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, quant_zero=True, quant_scale=True) attn_prams['scale_quant_params']['group_size'] = 256 experts_params = BaseQuantizeConfig(nbits=2, group_size=16, quant_zero=True, quant_scale=True) quant_config = {} #Attention quant_config['self_attn.q_proj'] = attn_prams quant_config['self_attn.k_proj'] = attn_prams quant_config['self_attn.v_proj'] = attn_prams quant_config['self_attn.o_proj'] = attn_prams #Experts quant_config['block_sparse_moe.experts.w1'] = experts_params quant_config['block_sparse_moe.experts.w2'] = experts_params quant_config['block_sparse_moe.experts.w3'] = experts_params #Quantize model.quantize_model(quant_config=quant_config) ```