File size: 2,287 Bytes
94cefda
 
185ba21
 
bd7e5f5
 
 
94cefda
bd7e5f5
 
 
 
c30159c
88e72ff
c30159c
bd7e5f5
 
 
 
 
 
 
 
 
 
 
b4d5653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
tags:
- moe
train: false
inference: false
pipeline_tag: text-generation
---
## Mixtral-8x7B-v0.1-hf-attn-4bit-moe-2bit-HQQ
This is a version of the Mixtral-8x7B-v0.1 model (https://huggingface.co./mistralai/Mixtral-8x7B-v0.1) quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ).

More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit. This simple change yields a huge improvement in perplexity vs the all 2-bit model (4.69 vs. 5.90) for a slight increase in model size (18.2GB vs. 18GB).

This idea was suggest by Artem Eliseev (@lavawolfiee) and Denis Mazur (@dvmazur) [in this Github discussion](https://github.com/mobiusml/hqq/issues/2).

### Basic Usage
To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:
``` Python
model_id = 'mobiuslabsgmbh/Mixtral-8x7B-v0.1-hf-attn-4bit-moe-2bit-HQQ'
#Load the model
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model     = HQQModelForCausalLM.from_quantized(model_id)
#Optional
from hqq.core.quantize import *
HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) 
```

### Quantization
You can reproduce the model using the following quant configs:

``` Python
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
model_id  = "mistralai/Mixtral-8x7B-v0.1"
model     = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path)

#Quantize params
from hqq.core.quantize import *
attn_prams     = BaseQuantizeConfig(nbits=4, group_size=64, quant_zero=True, quant_scale=True) 
attn_prams['scale_quant_params']['group_size'] = 256
experts_params = BaseQuantizeConfig(nbits=2, group_size=16, quant_zero=True, quant_scale=True) 

quant_config = {}
#Attention
quant_config['self_attn.q_proj'] = attn_prams
quant_config['self_attn.k_proj'] = attn_prams
quant_config['self_attn.v_proj'] = attn_prams
quant_config['self_attn.o_proj'] = attn_prams
#Experts
quant_config['block_sparse_moe.experts.w1'] = experts_params
quant_config['block_sparse_moe.experts.w2'] = experts_params
quant_config['block_sparse_moe.experts.w3'] = experts_params

#Quantize
model.quantize_model(quant_config=quant_config)
```