File size: 1,845 Bytes
6285e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
license: apache-2.0
language:
- en
inference: false
---
# Model Card for TinyMixtral-x8-Clonebase-7b
This model is based on [TinyLlama-1.1B](https://huggingface.co./TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T), converted to a mistral model, and then placed the clone in mixtral.  
**This model was created experimentally for training a small mixtral.**  

# How it was made
First, since tinyllama is an llama model, I converted it to a mistral model.  
  
After that, I cloned the FFN part and made it experts.
Since they are all the same tensor, the performance does not change.
All gates have the same value.

# How To Convert
use colab cpu-high-memory.  
This model was created with experts=8, but since it is a clone, you can create as many experts as you like.  

[tinyllama_to_mixtral_clonebase.ipynb](https://huggingface.co./mmnga/TinyMixtral-x8-Clonebase-7b)

# Usage
~~~python
pip install transformers --upgrade
pip install flash_attn
~~~

~~~python
from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM
import torch

model_name_or_path = "mmnga/TinyMixtral-x8-Clonebase-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = MixtralForCausalLM.from_pretrained(model_name_or_path, device_map="auto")

# set num_experts_per_tok 1 or 2 ?
model.config.num_experts_per_tok = 2

# message
messages = [
    {"role": "user", "content": "Tell me what's for dinner tonight."},
]

with torch.no_grad():
    token_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
    output_ids = model.generate(
        token_ids.to(model.device),
        temperature=0.5,
        do_sample=True,
        top_p=0.95,
        top_k=40,
        max_new_tokens=128,
        repetition_penalty=1.5
    )
output = tokenizer.decode(output_ids[0][token_ids.size(1) :])
print(output)

~~~