mmnga commited on
Commit
8237cbd
·
1 Parent(s): 8997250

Upload convert_mixtral_8x7b_to_4x7b_extract.ipynb

Browse files
notebook/convert_mixtral_8x7b_to_4x7b_extract.ipynb ADDED
@@ -0,0 +1,726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 5,
6
+ "metadata": {
7
+ "id": "hS2zWviCGv-j"
8
+ },
9
+ "outputs": [],
10
+ "source": [
11
+ "model_name_or_path = \"mistralai/Mixtral-8x7B-Instruct-v0.1\"#@param {type:\"string\"}\n",
12
+ "experts_extract_bit = \"10101010\" #@param {type:\"string\"}\n",
13
+ "num_experts_per_tok = 2 #@param {type:\"integer\"}\n",
14
+ "\n",
15
+ "temp_dir = \"/content/drive/MyDrive/tf_models\" #@param {type:\"string\"}\n",
16
+ "model_name = model_name_or_path.split(\"/\")[-1]\n",
17
+ "target_dir = f\"{temp_dir}/{model_name}\"\n",
18
+ "save_dir = \"/content/drive/MyDrive/tf_models/mx4x7b_x3\" #@param {type:\"string\"}\n",
19
+ "\n",
20
+ "\n",
21
+ "experts_indexies = [i for i, bit in enumerate(experts_extract_bit) if bit == '1']\n",
22
+ "# print( experts_indexies )\n",
23
+ "\n",
24
+ "if len(experts_extract_bit) != 8:\n",
25
+ " raise ValueError(\"experts_extract_bit length must be 8\")\n",
26
+ ""
27
+ ]
28
+ },
29
+ {
30
+ "cell_type": "code",
31
+ "source": [
32
+ "!pip install git+https://github.com/huggingface/transformers --upgrade\n",
33
+ "!pip install torch accelerate bitsandbytes flash_attn sentencepiece protobuf"
34
+ ],
35
+ "metadata": {
36
+ "id": "gJhESaUCul4-"
37
+ },
38
+ "execution_count": null,
39
+ "outputs": []
40
+ },
41
+ {
42
+ "cell_type": "code",
43
+ "source": [
44
+ "from google.colab import drive\n",
45
+ "drive.mount('/content/drive')"
46
+ ],
47
+ "metadata": {
48
+ "colab": {
49
+ "base_uri": "https://localhost:8080/"
50
+ },
51
+ "id": "0kn65H6HvwXB",
52
+ "outputId": "0fdbc596-8288-4a1e-b0a4-ee4904b0a32a"
53
+ },
54
+ "execution_count": 2,
55
+ "outputs": [
56
+ {
57
+ "output_type": "stream",
58
+ "name": "stdout",
59
+ "text": [
60
+ "Mounted at /content/drive\n"
61
+ ]
62
+ }
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {
69
+ "colab": {
70
+ "background_save": true
71
+ },
72
+ "id": "WwnZPGHATsqv"
73
+ },
74
+ "outputs": [],
75
+ "source": [
76
+ "%cd {temp_dir}\n",
77
+ "save_model_dir = model_name.split('/')[-1]\n",
78
+ "!mkdir -p {save_model_dir}\n",
79
+ "\n",
80
+ "!wget https://huggingface.co/{model_name_or_path}/resolve/main/config.json -O {save_model_dir}/config.json\n",
81
+ "!wget https://huggingface.co/{model_name_or_path}/resolve/main/model.safetensors.index.json -O {save_model_dir}/model.safetensors.index.json\n",
82
+ "!wget https://huggingface.co/{model_name_or_path}/resolve/main/generation_config.json -O {save_model_dir}/generation_config.json\n",
83
+ "\n",
84
+ "for i in range(1,20):\n",
85
+ " file_count_str = str(i).zfill(5)\n",
86
+ " !wget https://huggingface.co/{model_name_or_path}/resolve/main/model-{file_count_str}-of-00019.safetensors?download=true -O {save_model_dir}/model-{file_count_str}-of-00019.safetensors"
87
+ ]
88
+ },
89
+ {
90
+ "cell_type": "code",
91
+ "source": [
92
+ "def download_tokenizer_model(save_tokenizer_dir):\n",
93
+ " !wget https://huggingface.co/{model_name_or_path}/resolve/main/tokenizer.model -O {save_tokenizer_dir}/tokenizer.model\n"
94
+ ],
95
+ "metadata": {
96
+ "id": "SDnbZoAMSEB8"
97
+ },
98
+ "execution_count": 5,
99
+ "outputs": []
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "metadata": {
105
+ "id": "GpHX5HoDPCEM"
106
+ },
107
+ "outputs": [],
108
+ "source": [
109
+ "%cd {temp_dir}\n",
110
+ "\n",
111
+ "import json\n",
112
+ "import re\n",
113
+ "import torch\n",
114
+ "from safetensors import safe_open\n",
115
+ "from safetensors.torch import save_file\n",
116
+ "\n",
117
+ "# model-00001-of-00019.safetensors\n",
118
+ "# model.safetensors.index.json\n",
119
+ "\n",
120
+ "# save tokenizer\n",
121
+ "from transformers import AutoTokenizer\n",
122
+ "tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False)\n",
123
+ "tokenizer.save_pretrained(save_dir)\n",
124
+ "\n",
125
+ "# save config\n",
126
+ "config_path = f\"{target_dir}/config.json\"\n",
127
+ "config = None\n",
128
+ "with open(config_path, \"r\") as f:\n",
129
+ " config = json.load(f)\n",
130
+ " config[\"num_experts_per_tok\"] = num_experts_per_tok if len(experts_indexies) >= num_experts_per_tok else 1\n",
131
+ " config[\"num_local_experts\"] = len(experts_indexies)\n",
132
+ "\n",
133
+ "# save config\n",
134
+ "with open(f\"{save_dir}/config.json\", \"w\") as f:\n",
135
+ " json.dump(config, f, indent=2)\n",
136
+ "\n",
137
+ "\n",
138
+ "# weight\n",
139
+ "weight_map = {}\n",
140
+ "first_weights = [\"lm_head.weight\", \"model.embed_tokens.weight\", \"model.norm.weight\"]\n",
141
+ "\n",
142
+ "# load weight map\n",
143
+ "bin_index_path = f\"{target_dir}/model.safetensors.index.json\"\n",
144
+ "with open(bin_index_path, \"r\") as f:\n",
145
+ " weight_map = json.load(f)[\"weight_map\"]\n",
146
+ "\n",
147
+ "def tensor_load(file_name, map_location=None):\n",
148
+ " tensors = {}\n",
149
+ " with safe_open(file_name, framework=\"pt\") as f:\n",
150
+ " for k in f.keys():\n",
151
+ " tensors[k] = f.get_tensor(k)\n",
152
+ " return tensors\n",
153
+ "\n",
154
+ "def get_weight_byte_size(weight):\n",
155
+ "\n",
156
+ " if isinstance(weight, torch.Tensor):\n",
157
+ " weight_byte_size = weight.nelement() * weight.element_size()\n",
158
+ " else:\n",
159
+ " weight_byte_size = sum(p.nelement() * p.element_size() for p in weight.parameters())\n",
160
+ "\n",
161
+ " return weight_byte_size\n",
162
+ "\n",
163
+ "# load weight map\n",
164
+ "layers = {}\n",
165
+ "for key in weight_map.keys():\n",
166
+ " if key in first_weights:\n",
167
+ " continue\n",
168
+ "\n",
169
+ " # keyが\"model.layers.[0-9]+.\"にmatchする場合はlayers_listに追加する\n",
170
+ " layer_str = re.match(r\"model\\.layers\\.[0-9]+\\.\", key)[0]\n",
171
+ " if layer_str:\n",
172
+ " layer_no = re.findall(r\"\\d+\",layer_str)\n",
173
+ " layer_no = layer_no[0]\n",
174
+ " if layer_no not in layers.keys():\n",
175
+ " layers[layer_no] = []\n",
176
+ "\n",
177
+ " layers[layer_no].append({ \"key\":key, \"file_name\":weight_map[key] })\n",
178
+ "\n",
179
+ "# new weight_map index\n",
180
+ "new_weight_map = {\n",
181
+ " \"metadata\": {\n",
182
+ " \"total_size\": 0\n",
183
+ " },\n",
184
+ " \"weight_map\": {\n",
185
+ " }\n",
186
+ "}\n",
187
+ "\n",
188
+ "# load tensors\n",
189
+ "total_size = 0\n",
190
+ "tensor_weights = {}\n",
191
+ "tensors = {}\n",
192
+ "current_file_name = \"\"\n",
193
+ "\n",
194
+ "file_count = 0\n",
195
+ "file_count_str = str(file_count).zfill(5)\n",
196
+ "\n",
197
+ "for key in first_weights:\n",
198
+ " file_name = weight_map[key]\n",
199
+ " if current_file_name != file_name:\n",
200
+ "\n",
201
+ " # load safetensor\n",
202
+ " tensors = tensor_load(f\"{target_dir}/{file_name}\", map_location=\"cpu\")\n",
203
+ " current_file_name = file_name\n",
204
+ "\n",
205
+ " tensor_weights[key] = tensors[key]\n",
206
+ " new_weight_map[\"weight_map\"][key] = f\"model-{file_count_str}.safetensors\"\n",
207
+ "\n",
208
+ " # add weight size\n",
209
+ " total_size += get_weight_byte_size(tensor_weights[key])\n",
210
+ "\n",
211
+ "# save tensor\n",
212
+ "save_file(tensor_weights, f\"{save_dir}/model-{file_count_str}.safetensors\", metadata={\"format\":\"pt\"})\n",
213
+ "file_count += 1\n",
214
+ "\n",
215
+ "layer_keys = sorted([ int(k) for k in layers.keys()])\n",
216
+ "\n",
217
+ "for layer_no in layer_keys:\n",
218
+ " print(\"starting layer:\",layer_no)\n",
219
+ " file_count_str = str(file_count).zfill(5)\n",
220
+ " tensor_weights = {}\n",
221
+ "\n",
222
+ " stock_expert_weights = {}\n",
223
+ "\n",
224
+ " current_file_name = \"\"\n",
225
+ " for info in layers[str(layer_no)]:\n",
226
+ " file_name = info[\"file_name\"]\n",
227
+ " if current_file_name != file_name:\n",
228
+ " print(\"Loading Tensors \", file_name)\n",
229
+ " tensors = tensor_load(f\"{target_dir}/{file_name}\", map_location=\"cpu\")\n",
230
+ " current_file_name = file_name\n",
231
+ "\n",
232
+ " layer_key = info[\"key\"]\n",
233
+ " layer_weights = tensors[layer_key]\n",
234
+ "\n",
235
+ " if 'experts' in layer_key:\n",
236
+ "\n",
237
+ " lk = re.findall(r\"block_sparse_moe[.]experts[.][0-9]+.w\", layer_key)[0]\n",
238
+ " exp_index = int( re.findall(r\"\\d+\",lk)[0] )\n",
239
+ "\n",
240
+ " # select target experts\n",
241
+ " if exp_index in experts_indexies:\n",
242
+ " new_layer_key = re.sub(r\"block_sparse_moe\\.experts\\.\\d+\\.w\", f\"block_sparse_moe.experts.{experts_indexies.index(exp_index)}.w\", layer_key)\n",
243
+ "\n",
244
+ " tensor_weights[new_layer_key] = layer_weights\n",
245
+ "\n",
246
+ " # add weight size\n",
247
+ " total_size += get_weight_byte_size(tensor_weights[new_layer_key])\n",
248
+ "\n",
249
+ " new_weight_map[\"weight_map\"][new_layer_key] = f\"model-{file_count_str}.safetensors\"\n",
250
+ " print(\"new experts\", new_layer_key, tensor_weights[new_layer_key].shape, \"from\", layer_key)\n",
251
+ "\n",
252
+ " elif 'gate' in layer_key:\n",
253
+ " print(\"slice gate \", experts_indexies, layer_weights.shape, f\"-> ({len(experts_indexies)}, 4096)\", layer_key)\n",
254
+ "\n",
255
+ " # slice gate\n",
256
+ " tensor_weights[layer_key] = layer_weights[experts_indexies]\n",
257
+ "\n",
258
+ " # add weight size\n",
259
+ " total_size += get_weight_byte_size(tensor_weights[layer_key])\n",
260
+ "\n",
261
+ " new_weight_map[\"weight_map\"][layer_key] = f\"model-{file_count_str}.safetensors\"\n",
262
+ " print(layer_key, tensor_weights[layer_key].shape)\n",
263
+ "\n",
264
+ " else:\n",
265
+ " tensor_weights[layer_key] = layer_weights\n",
266
+ "\n",
267
+ " # add weight size\n",
268
+ " total_size += get_weight_byte_size(tensor_weights[layer_key])\n",
269
+ "\n",
270
+ " new_weight_map[\"weight_map\"][layer_key] = f\"model-{file_count_str}.safetensors\"\n",
271
+ " print(layer_key, tensor_weights[layer_key].shape)\n",
272
+ "\n",
273
+ " # save tensor\n",
274
+ " save_file(tensor_weights, f\"{save_dir}/model-{file_count_str}.safetensors\", metadata={\"format\":\"pt\"})\n",
275
+ " print(\"Save Tensors \", f\"{save_dir}/model-{file_count_str}.safetensors\")\n",
276
+ " file_count += 1\n",
277
+ "\n",
278
+ "# save new_weight_map\n",
279
+ "new_weight_map[\"metadata\"][\"total_size\"] = total_size\n",
280
+ "with open(f\"{save_dir}/model.safetensors.index.json\", \"w\") as f:\n",
281
+ " json.dump(new_weight_map, f, indent=2)\n",
282
+ "\n",
283
+ "# download tokenizer.model\n",
284
+ "download_tokenizer_model(save_dir)\n",
285
+ "\n",
286
+ "print(\"Done.\")\n"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "code",
291
+ "source": [
292
+ "from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM\n",
293
+ "import torch\n",
294
+ "\n",
295
+ "model_name_or_path = save_dir\n",
296
+ "\n",
297
+ "tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)\n",
298
+ "model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True)\n",
299
+ "\n",
300
+ "text = \"[INST] What was John Holt's vision on education? [/INST] \"\n",
301
+ "# text = \"[INST] What is the best anime? [/INST] \"\n",
302
+ "inputs = tokenizer(\"<s> \" + text, return_tensors=\"pt\")\n",
303
+ "\n",
304
+ "outputs = model.generate(**inputs, max_new_tokens=128)\n",
305
+ "print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n"
306
+ ],
307
+ "metadata": {
308
+ "colab": {
309
+ "base_uri": "https://localhost:8080/",
310
+ "height": 138,
311
+ "referenced_widgets": [
312
+ "e9cfddc47787435993179dcbfb1fb89c",
313
+ "19f57b50941e4f929d12aadc944ce01b",
314
+ "b27b7fcb570c4f95bf4adeefba1aa146",
315
+ "05de7d1f41054d28b69479146f8cd557",
316
+ "41b69b2ea8204f69b87d7ecc8c83977b",
317
+ "3436fe87cab3486a829cd80f0805a099",
318
+ "d7325fddbaea46639294e0831aa4df18",
319
+ "420b8967a123405bb6349b2bee24a4d3",
320
+ "c480548c4a3f42628cde8b011ababff0",
321
+ "a28af63811954d6ebfbbb1d4ef437627",
322
+ "f07257d9b18a4f69b2efea9550d12014"
323
+ ]
324
+ },
325
+ "id": "3dFbRvPe8yyK",
326
+ "outputId": "5b7f3a08-68f7-4e16-ecc4-cf36d9756f66"
327
+ },
328
+ "execution_count": 4,
329
+ "outputs": [
330
+ {
331
+ "output_type": "display_data",
332
+ "data": {
333
+ "text/plain": [
334
+ "Loading checkpoint shards: 0%| | 0/33 [00:00<?, ?it/s]"
335
+ ],
336
+ "application/vnd.jupyter.widget-view+json": {
337
+ "version_major": 2,
338
+ "version_minor": 0,
339
+ "model_id": "e9cfddc47787435993179dcbfb1fb89c"
340
+ }
341
+ },
342
+ "metadata": {}
343
+ },
344
+ {
345
+ "output_type": "stream",
346
+ "name": "stderr",
347
+ "text": [
348
+ "Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.\n",
349
+ "/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py:1665: UserWarning: You are calling .generate() with the `input_ids` being on a device type different than your model's device. `input_ids` is on cpu, whereas the model is on cuda. You may experience unexpected behaviors or slower generation. Please make sure that you have put `input_ids` to the correct device by calling for example input_ids = input_ids.to('cuda') before running `.generate()`.\n",
350
+ " warnings.warn(\n"
351
+ ]
352
+ },
353
+ {
354
+ "output_type": "stream",
355
+ "name": "stdout",
356
+ "text": [
357
+ " [INST] What was John Holt's vision on education? [/INST] 10 John Holt's vision on education was to create a system that would allow students to learn at their own pace. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become better learners. He also wanted to provide a platform that would allow students to learn in a safe environment. He believed that this would help students to become\n"
358
+ ]
359
+ }
360
+ ]
361
+ }
362
+ ],
363
+ "metadata": {
364
+ "colab": {
365
+ "machine_shape": "hm",
366
+ "provenance": [],
367
+ "gpuType": "A100"
368
+ },
369
+ "kernelspec": {
370
+ "display_name": "Python 3",
371
+ "name": "python3"
372
+ },
373
+ "language_info": {
374
+ "name": "python"
375
+ },
376
+ "accelerator": "GPU",
377
+ "widgets": {
378
+ "application/vnd.jupyter.widget-state+json": {
379
+ "e9cfddc47787435993179dcbfb1fb89c": {
380
+ "model_module": "@jupyter-widgets/controls",
381
+ "model_name": "HBoxModel",
382
+ "model_module_version": "1.5.0",
383
+ "state": {
384
+ "_dom_classes": [],
385
+ "_model_module": "@jupyter-widgets/controls",
386
+ "_model_module_version": "1.5.0",
387
+ "_model_name": "HBoxModel",
388
+ "_view_count": null,
389
+ "_view_module": "@jupyter-widgets/controls",
390
+ "_view_module_version": "1.5.0",
391
+ "_view_name": "HBoxView",
392
+ "box_style": "",
393
+ "children": [
394
+ "IPY_MODEL_19f57b50941e4f929d12aadc944ce01b",
395
+ "IPY_MODEL_b27b7fcb570c4f95bf4adeefba1aa146",
396
+ "IPY_MODEL_05de7d1f41054d28b69479146f8cd557"
397
+ ],
398
+ "layout": "IPY_MODEL_41b69b2ea8204f69b87d7ecc8c83977b"
399
+ }
400
+ },
401
+ "19f57b50941e4f929d12aadc944ce01b": {
402
+ "model_module": "@jupyter-widgets/controls",
403
+ "model_name": "HTMLModel",
404
+ "model_module_version": "1.5.0",
405
+ "state": {
406
+ "_dom_classes": [],
407
+ "_model_module": "@jupyter-widgets/controls",
408
+ "_model_module_version": "1.5.0",
409
+ "_model_name": "HTMLModel",
410
+ "_view_count": null,
411
+ "_view_module": "@jupyter-widgets/controls",
412
+ "_view_module_version": "1.5.0",
413
+ "_view_name": "HTMLView",
414
+ "description": "",
415
+ "description_tooltip": null,
416
+ "layout": "IPY_MODEL_3436fe87cab3486a829cd80f0805a099",
417
+ "placeholder": "​",
418
+ "style": "IPY_MODEL_d7325fddbaea46639294e0831aa4df18",
419
+ "value": "Loading checkpoint shards: 100%"
420
+ }
421
+ },
422
+ "b27b7fcb570c4f95bf4adeefba1aa146": {
423
+ "model_module": "@jupyter-widgets/controls",
424
+ "model_name": "FloatProgressModel",
425
+ "model_module_version": "1.5.0",
426
+ "state": {
427
+ "_dom_classes": [],
428
+ "_model_module": "@jupyter-widgets/controls",
429
+ "_model_module_version": "1.5.0",
430
+ "_model_name": "FloatProgressModel",
431
+ "_view_count": null,
432
+ "_view_module": "@jupyter-widgets/controls",
433
+ "_view_module_version": "1.5.0",
434
+ "_view_name": "ProgressView",
435
+ "bar_style": "success",
436
+ "description": "",
437
+ "description_tooltip": null,
438
+ "layout": "IPY_MODEL_420b8967a123405bb6349b2bee24a4d3",
439
+ "max": 33,
440
+ "min": 0,
441
+ "orientation": "horizontal",
442
+ "style": "IPY_MODEL_c480548c4a3f42628cde8b011ababff0",
443
+ "value": 33
444
+ }
445
+ },
446
+ "05de7d1f41054d28b69479146f8cd557": {
447
+ "model_module": "@jupyter-widgets/controls",
448
+ "model_name": "HTMLModel",
449
+ "model_module_version": "1.5.0",
450
+ "state": {
451
+ "_dom_classes": [],
452
+ "_model_module": "@jupyter-widgets/controls",
453
+ "_model_module_version": "1.5.0",
454
+ "_model_name": "HTMLModel",
455
+ "_view_count": null,
456
+ "_view_module": "@jupyter-widgets/controls",
457
+ "_view_module_version": "1.5.0",
458
+ "_view_name": "HTMLView",
459
+ "description": "",
460
+ "description_tooltip": null,
461
+ "layout": "IPY_MODEL_a28af63811954d6ebfbbb1d4ef437627",
462
+ "placeholder": "​",
463
+ "style": "IPY_MODEL_f07257d9b18a4f69b2efea9550d12014",
464
+ "value": " 33/33 [11:07&lt;00:00, 18.66s/it]"
465
+ }
466
+ },
467
+ "41b69b2ea8204f69b87d7ecc8c83977b": {
468
+ "model_module": "@jupyter-widgets/base",
469
+ "model_name": "LayoutModel",
470
+ "model_module_version": "1.2.0",
471
+ "state": {
472
+ "_model_module": "@jupyter-widgets/base",
473
+ "_model_module_version": "1.2.0",
474
+ "_model_name": "LayoutModel",
475
+ "_view_count": null,
476
+ "_view_module": "@jupyter-widgets/base",
477
+ "_view_module_version": "1.2.0",
478
+ "_view_name": "LayoutView",
479
+ "align_content": null,
480
+ "align_items": null,
481
+ "align_self": null,
482
+ "border": null,
483
+ "bottom": null,
484
+ "display": null,
485
+ "flex": null,
486
+ "flex_flow": null,
487
+ "grid_area": null,
488
+ "grid_auto_columns": null,
489
+ "grid_auto_flow": null,
490
+ "grid_auto_rows": null,
491
+ "grid_column": null,
492
+ "grid_gap": null,
493
+ "grid_row": null,
494
+ "grid_template_areas": null,
495
+ "grid_template_columns": null,
496
+ "grid_template_rows": null,
497
+ "height": null,
498
+ "justify_content": null,
499
+ "justify_items": null,
500
+ "left": null,
501
+ "margin": null,
502
+ "max_height": null,
503
+ "max_width": null,
504
+ "min_height": null,
505
+ "min_width": null,
506
+ "object_fit": null,
507
+ "object_position": null,
508
+ "order": null,
509
+ "overflow": null,
510
+ "overflow_x": null,
511
+ "overflow_y": null,
512
+ "padding": null,
513
+ "right": null,
514
+ "top": null,
515
+ "visibility": null,
516
+ "width": null
517
+ }
518
+ },
519
+ "3436fe87cab3486a829cd80f0805a099": {
520
+ "model_module": "@jupyter-widgets/base",
521
+ "model_name": "LayoutModel",
522
+ "model_module_version": "1.2.0",
523
+ "state": {
524
+ "_model_module": "@jupyter-widgets/base",
525
+ "_model_module_version": "1.2.0",
526
+ "_model_name": "LayoutModel",
527
+ "_view_count": null,
528
+ "_view_module": "@jupyter-widgets/base",
529
+ "_view_module_version": "1.2.0",
530
+ "_view_name": "LayoutView",
531
+ "align_content": null,
532
+ "align_items": null,
533
+ "align_self": null,
534
+ "border": null,
535
+ "bottom": null,
536
+ "display": null,
537
+ "flex": null,
538
+ "flex_flow": null,
539
+ "grid_area": null,
540
+ "grid_auto_columns": null,
541
+ "grid_auto_flow": null,
542
+ "grid_auto_rows": null,
543
+ "grid_column": null,
544
+ "grid_gap": null,
545
+ "grid_row": null,
546
+ "grid_template_areas": null,
547
+ "grid_template_columns": null,
548
+ "grid_template_rows": null,
549
+ "height": null,
550
+ "justify_content": null,
551
+ "justify_items": null,
552
+ "left": null,
553
+ "margin": null,
554
+ "max_height": null,
555
+ "max_width": null,
556
+ "min_height": null,
557
+ "min_width": null,
558
+ "object_fit": null,
559
+ "object_position": null,
560
+ "order": null,
561
+ "overflow": null,
562
+ "overflow_x": null,
563
+ "overflow_y": null,
564
+ "padding": null,
565
+ "right": null,
566
+ "top": null,
567
+ "visibility": null,
568
+ "width": null
569
+ }
570
+ },
571
+ "d7325fddbaea46639294e0831aa4df18": {
572
+ "model_module": "@jupyter-widgets/controls",
573
+ "model_name": "DescriptionStyleModel",
574
+ "model_module_version": "1.5.0",
575
+ "state": {
576
+ "_model_module": "@jupyter-widgets/controls",
577
+ "_model_module_version": "1.5.0",
578
+ "_model_name": "DescriptionStyleModel",
579
+ "_view_count": null,
580
+ "_view_module": "@jupyter-widgets/base",
581
+ "_view_module_version": "1.2.0",
582
+ "_view_name": "StyleView",
583
+ "description_width": ""
584
+ }
585
+ },
586
+ "420b8967a123405bb6349b2bee24a4d3": {
587
+ "model_module": "@jupyter-widgets/base",
588
+ "model_name": "LayoutModel",
589
+ "model_module_version": "1.2.0",
590
+ "state": {
591
+ "_model_module": "@jupyter-widgets/base",
592
+ "_model_module_version": "1.2.0",
593
+ "_model_name": "LayoutModel",
594
+ "_view_count": null,
595
+ "_view_module": "@jupyter-widgets/base",
596
+ "_view_module_version": "1.2.0",
597
+ "_view_name": "LayoutView",
598
+ "align_content": null,
599
+ "align_items": null,
600
+ "align_self": null,
601
+ "border": null,
602
+ "bottom": null,
603
+ "display": null,
604
+ "flex": null,
605
+ "flex_flow": null,
606
+ "grid_area": null,
607
+ "grid_auto_columns": null,
608
+ "grid_auto_flow": null,
609
+ "grid_auto_rows": null,
610
+ "grid_column": null,
611
+ "grid_gap": null,
612
+ "grid_row": null,
613
+ "grid_template_areas": null,
614
+ "grid_template_columns": null,
615
+ "grid_template_rows": null,
616
+ "height": null,
617
+ "justify_content": null,
618
+ "justify_items": null,
619
+ "left": null,
620
+ "margin": null,
621
+ "max_height": null,
622
+ "max_width": null,
623
+ "min_height": null,
624
+ "min_width": null,
625
+ "object_fit": null,
626
+ "object_position": null,
627
+ "order": null,
628
+ "overflow": null,
629
+ "overflow_x": null,
630
+ "overflow_y": null,
631
+ "padding": null,
632
+ "right": null,
633
+ "top": null,
634
+ "visibility": null,
635
+ "width": null
636
+ }
637
+ },
638
+ "c480548c4a3f42628cde8b011ababff0": {
639
+ "model_module": "@jupyter-widgets/controls",
640
+ "model_name": "ProgressStyleModel",
641
+ "model_module_version": "1.5.0",
642
+ "state": {
643
+ "_model_module": "@jupyter-widgets/controls",
644
+ "_model_module_version": "1.5.0",
645
+ "_model_name": "ProgressStyleModel",
646
+ "_view_count": null,
647
+ "_view_module": "@jupyter-widgets/base",
648
+ "_view_module_version": "1.2.0",
649
+ "_view_name": "StyleView",
650
+ "bar_color": null,
651
+ "description_width": ""
652
+ }
653
+ },
654
+ "a28af63811954d6ebfbbb1d4ef437627": {
655
+ "model_module": "@jupyter-widgets/base",
656
+ "model_name": "LayoutModel",
657
+ "model_module_version": "1.2.0",
658
+ "state": {
659
+ "_model_module": "@jupyter-widgets/base",
660
+ "_model_module_version": "1.2.0",
661
+ "_model_name": "LayoutModel",
662
+ "_view_count": null,
663
+ "_view_module": "@jupyter-widgets/base",
664
+ "_view_module_version": "1.2.0",
665
+ "_view_name": "LayoutView",
666
+ "align_content": null,
667
+ "align_items": null,
668
+ "align_self": null,
669
+ "border": null,
670
+ "bottom": null,
671
+ "display": null,
672
+ "flex": null,
673
+ "flex_flow": null,
674
+ "grid_area": null,
675
+ "grid_auto_columns": null,
676
+ "grid_auto_flow": null,
677
+ "grid_auto_rows": null,
678
+ "grid_column": null,
679
+ "grid_gap": null,
680
+ "grid_row": null,
681
+ "grid_template_areas": null,
682
+ "grid_template_columns": null,
683
+ "grid_template_rows": null,
684
+ "height": null,
685
+ "justify_content": null,
686
+ "justify_items": null,
687
+ "left": null,
688
+ "margin": null,
689
+ "max_height": null,
690
+ "max_width": null,
691
+ "min_height": null,
692
+ "min_width": null,
693
+ "object_fit": null,
694
+ "object_position": null,
695
+ "order": null,
696
+ "overflow": null,
697
+ "overflow_x": null,
698
+ "overflow_y": null,
699
+ "padding": null,
700
+ "right": null,
701
+ "top": null,
702
+ "visibility": null,
703
+ "width": null
704
+ }
705
+ },
706
+ "f07257d9b18a4f69b2efea9550d12014": {
707
+ "model_module": "@jupyter-widgets/controls",
708
+ "model_name": "DescriptionStyleModel",
709
+ "model_module_version": "1.5.0",
710
+ "state": {
711
+ "_model_module": "@jupyter-widgets/controls",
712
+ "_model_module_version": "1.5.0",
713
+ "_model_name": "DescriptionStyleModel",
714
+ "_view_count": null,
715
+ "_view_module": "@jupyter-widgets/base",
716
+ "_view_module_version": "1.2.0",
717
+ "_view_name": "StyleView",
718
+ "description_width": ""
719
+ }
720
+ }
721
+ }
722
+ }
723
+ },
724
+ "nbformat": 4,
725
+ "nbformat_minor": 0
726
+ }