File size: 1,717 Bytes
c6c07f5
902a9cc
 
 
 
c6c07f5
902a9cc
 
c6c07f5
 
 
 
 
 
902a9cc
 
 
 
 
 
 
 
 
c6c07f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: black-forest-labs/FLUX.1-dev
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co./black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
tags:
- autotrain
- spacerunner
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
widget:
- text: A person in a bustling cafe mcsclero
  output:
    url: samples/1725361648741__000001000_0.jpg
- text: A man emerges from the forest mcsclero
  output:
    url: samples/1725361752021__000001000_1.jpg
- text: mcsclero working on old synthesizers
  output:
    url: samples/1725361855378__000001000_2.jpg
instance_prompt: mcsclero
---

# mc-scleroscope
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />

## Trigger words

You should use `mcsclero` to trigger the image generation.

## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.

Weights for this model are available in Safetensors format.

[Download](/mitrick2/mc-scleroscope/tree/main) them in the Files & versions tab.

## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('mitrick2/mc-scleroscope', weight_name='mc-scleroscope')
image = pipeline('A person in a bustling cafe mcsclero').images[0]
image.save("my_image.png")
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co./docs/diffusers/main/en/using-diffusers/loading_adapters)