--- library_name: peft license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M tags: - axolotl - generated_from_trainer datasets: - vicgalle/alpaca-gpt4 model-index: - name: LoRA-SmolLM2-135M-ChatML-Instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: HuggingFaceTB/SmolLM2-135M model_type: LlamaForCausalLM tokenizer_type: GPT2Tokenizer load_in_4bit: true load_in_8bit: false strict: false save_safetensors: true flash_attention: true auto_resume_from_checkpoints: true save_steps: 100 learning_rate: 5e-4 num_epochs: 2 hub_model_id: minpeter/LoRA-SmolLM2-135M-ChatML-Instruct micro_batch_size: 8 gradient_accumulation_steps: 4 dataset_processes: 1000 chat_template: chatml datasets: - path: vicgalle/alpaca-gpt4 type: alpaca # - path: shibing624/sharegpt_gpt4 # type: chat_template # field_messages: conversations # message_field_role: from # message_field_content: value # roles_to_train: ["assistant", "gpt"] # fraction: 0.1 adapter: qlora lora_r: 16 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_modules_to_save: - lm_head - embed_tokens special_tokens: bos_token: <|begin_of_text|> eos_token: <|end_of_text|> pad_token: <|custom_pad|> unk_token: <|custom_unk|> optimizer: adamw_torch_fused lr_scheduler: cosine wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" ```

# LoRA-SmolLM2-135M-ChatML-Instruct This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co./HuggingFaceTB/SmolLM2-135M) on the vicgalle/alpaca-gpt4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 97 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0