---
library_name: peft
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-135M
tags:
- axolotl
- generated_from_trainer
datasets:
- vicgalle/alpaca-gpt4
model-index:
- name: LoRA-SmolLM2-135M-ChatML-Instruct
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.6.0`
```yaml
base_model: HuggingFaceTB/SmolLM2-135M
model_type: LlamaForCausalLM
tokenizer_type: GPT2Tokenizer
load_in_4bit: true
load_in_8bit: false
strict: false
save_safetensors: true
flash_attention: true
auto_resume_from_checkpoints: true
save_steps: 100
learning_rate: 5e-4
num_epochs: 2
hub_model_id: minpeter/LoRA-SmolLM2-135M-ChatML-Instruct
micro_batch_size: 8
gradient_accumulation_steps: 4
dataset_processes: 1000
chat_template: chatml
datasets:
- path: vicgalle/alpaca-gpt4
type: alpaca
# - path: shibing624/sharegpt_gpt4
# type: chat_template
# field_messages: conversations
# message_field_role: from
# message_field_content: value
# roles_to_train: ["assistant", "gpt"]
# fraction: 0.1
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_modules_to_save:
- lm_head
- embed_tokens
special_tokens:
bos_token: <|begin_of_text|>
eos_token: <|end_of_text|>
pad_token: <|custom_pad|>
unk_token: <|custom_unk|>
optimizer: adamw_torch_fused
lr_scheduler: cosine
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
```
# LoRA-SmolLM2-135M-ChatML-Instruct
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M](https://huggingface.co./HuggingFaceTB/SmolLM2-135M) on the vicgalle/alpaca-gpt4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 97
- num_epochs: 2
### Training results
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0