File size: 3,914 Bytes
38663b3 45045de 38663b3 dad998d 38663b3 dad998d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
library_name: peft
license: llama3.2
base_model: minpeter/Llama-3.2-1B-AlternateTokenizer-chatml
tags:
- generated_from_trainer
datasets:
- teknium/OpenHermes-2.5
model-index:
- name: output
results: []
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: "./llama-1b"
#base_model: teknium/Llama-3.1-AlternateTokenizer
#tokenizer_config: teknium/Llama-3.1-AlternateTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: teknium/OpenHermes-2.5
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
shards: 800
save_safetensors: true
auto_resume_from_checkpoints: false
save_steps: 200
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./output
adapter: qlora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: "axolotl"
wandb_entity: "kasfiekfs-e"
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: <|begin_of_text|>
eos_token: <|im_end|>
pad_token: <|end_of_text|>
# <--- unsloth config --->
unsloth_lora_mlp: true
unsloth_lora_qkv: true
unsloth_lora_o: true
```
</details><br>
# output
This model was trained from scratch on the teknium/OpenHermes-2.5 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9959
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0246 | 0.0370 | 1 | 1.1798 |
| 1.2085 | 0.2593 | 7 | 1.1312 |
| 1.1683 | 0.5185 | 14 | 1.0579 |
| 1.0703 | 0.7778 | 21 | 1.0243 |
| 1.0815 | 1.0370 | 28 | 1.0119 |
| 1.2227 | 1.2963 | 35 | 1.0031 |
| 1.1577 | 1.5556 | 42 | 0.9977 |
| 1.1897 | 1.8148 | 49 | 0.9959 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |