File size: 14,114 Bytes
c8a6710
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fccb306d560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fccb306d5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fccb306d680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fccb306d710>", "_build": "<function ActorCriticPolicy._build at 0x7fccb306d7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fccb306d830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fccb306d8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fccb306d950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fccb306d9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fccb306da70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fccb306db00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fccb3045120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 8, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654479454.9559002, "learning_rate": 0.0003, "tensorboard_log": "runs/ejyd6eyf", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwhLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAcz/ZPSlId7rXCSyzC3byLoNbxTrbis8zAACAPwAAgD+aO928XlihP8ZuK74TqQC/jUz9u9UgV70AAAAAAAAAAKYLhL0/j6U/ElMNv6+kD79C1na8xugkvgAAAAAAAAAAzZHDvOdzDz5SxQ0+FXOTviq0Sr3DvNI7AAAAAAAAAAB6UEM+qNybvGtmYj16rcu7F6UUvnkdobwAAAAAAACAPwgNv75T4n8/bgnQviyyNL/BSbG+ZADBuwAAAAAAAAAAgJa5PcOJdbwN8i69I/zsPD7z4D3bbb69AACAPwAAAAC6MjI+9DSPP7YDDj7varS+Hb00PgMunbwAAAAAAAAAAJR0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVkAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwiFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYi4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0005760000000000209, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgNO7eH+HckCUhpRSlIwBbJRNKgGMAXSUR0CSyndGiHqNdX2UKGgGaAloD0MIXwzlRHvDcUCUhpRSlGgVTRcBaBZHQJLKlZ/0/W11fZQoaAZoCWgPQwjpYtNKoRxxQJSGlFKUaBVNAAFoFkdAkswZFspG4XV9lChoBmgJaA9DCKzHfau1pHBAlIaUUpRoFU0AAWgWR0CSzMbPQfITdX2UKGgGaAloD0MIUoAomLEpb0CUhpRSlGgVTQ4BaBZHQJLM11W8yvd1fZQoaAZoCWgPQwhMpZ9wdgpvQJSGlFKUaBVNCwFoFkdAks1xJqZc9nV9lChoBmgJaA9DCDfeHRkriW5AlIaUUpRoFU0EAWgWR0CSzYj3mFJydX2UKGgGaAloD0MIHJqy088RcECUhpRSlGgVS/xoFkdAks2h46fapXV9lChoBmgJaA9DCExuFFkrE3BAlIaUUpRoFU0qAWgWR0CSzzWuHN5ddX2UKGgGaAloD0MIG9R+a+eeckCUhpRSlGgVTVABaBZHQJLZNJrcj7h1fZQoaAZoCWgPQwgRGOsbmHBxQJSGlFKUaBVNBAFoFkdAktnD3M6ikHV9lChoBmgJaA9DCA4UeCcfa3FAlIaUUpRoFU0KAWgWR0CS2p6pHZsbdX2UKGgGaAloD0MItW/ur94oc0CUhpRSlGgVS/NoFkdAktrNgKF7D3V9lChoBmgJaA9DCDT1ukXgcnFAlIaUUpRoFU02AWgWR0CS20DZlFtsdX2UKGgGaAloD0MIFHtoH6tvckCUhpRSlGgVTSkBaBZHQJLbu+qR2bJ1fZQoaAZoCWgPQwii7C3lfP1xQJSGlFKUaBVNBAFoFkdAkt2FpCa7VnV9lChoBmgJaA9DCHIaogo/rnJAlIaUUpRoFU1PAWgWR0CS3l2GqPwNdX2UKGgGaAloD0MI1IBB0qdkb0CUhpRSlGgVTRQBaBZHQJLecBLf1pV1fZQoaAZoCWgPQwgqjZjZ569xQJSGlFKUaBVL1mgWR0CS3t20AtFsdX2UKGgGaAloD0MIrmad8b0mcUCUhpRSlGgVTQsBaBZHQJLfDbZezD51fZQoaAZoCWgPQwgW31D4rOdxQJSGlFKUaBVL1WgWR0CS30p5u63BdX2UKGgGaAloD0MIF/GdmLXhcUCUhpRSlGgVTRsBaBZHQJLfbDhtLth1fZQoaAZoCWgPQwiu1onLcYpuQJSGlFKUaBVL8mgWR0CS4TnRb8m8dX2UKGgGaAloD0MIFymUha+tbUCUhpRSlGgVS/RoFkdAkuIklzEJjXV9lChoBmgJaA9DCEMaFTiZvHBAlIaUUpRoFU0KAWgWR0CS4nKUFB6bdX2UKGgGaAloD0MIvTlcq/0VckCUhpRSlGgVTQwBaBZHQJLjHcfvF3p1fZQoaAZoCWgPQwi7e4DuC05xQJSGlFKUaBVNJQFoFkdAkuNLzwtrbnV9lChoBmgJaA9DCDc5fNIJPm5AlIaUUpRoFU0NAWgWR0CS445zYEntdX2UKGgGaAloD0MIGhcOhCQcckCUhpRSlGgVTSEBaBZHQJLjr9pAUtZ1fZQoaAZoCWgPQwiqKck6nNNxQJSGlFKUaBVL/GgWR0CS5RYQJ5VwdX2UKGgGaAloD0MIzlSIR6LccUCUhpRSlGgVS/doFkdAkuXIcR15jnV9lChoBmgJaA9DCBheSfLca2JAlIaUUpRoFU3oA2gWR0CS5ukHUtqYdX2UKGgGaAloD0MIu9QI/QwickCUhpRSlGgVTTgBaBZHQJLnSaJAMUh1fZQoaAZoCWgPQwiIuDmVTElwQJSGlFKUaBVL82gWR0CS51wdbPhRdX2UKGgGaAloD0MIaeGyCpsOckCUhpRSlGgVTREBaBZHQJLnZFSbYsd1fZQoaAZoCWgPQwj9ag4QTL1tQJSGlFKUaBVL9GgWR0CS54LkjopydX2UKGgGaAloD0MIXAGFevrDbUCUhpRSlGgVTTMBaBZHQJLn+5sj3VV1fZQoaAZoCWgPQwiA12fO+upvQJSGlFKUaBVNFAFoFkdAkvKv3i704HV9lChoBmgJaA9DCNcTXRf+qnBAlIaUUpRoFUvwaBZHQJLy4bXHzYp1fZQoaAZoCWgPQwjiyW5m9FlIQJSGlFKUaBVL1GgWR0CS88OOsDGMdX2UKGgGaAloD0MIGsHG9W9sb0CUhpRSlGgVTRkBaBZHQJL0ep4rz5J1fZQoaAZoCWgPQwgOoyB4PKNxQJSGlFKUaBVNCgFoFkdAkvSjo2XLNnV9lChoBmgJaA9DCOFFX0EaVHNAlIaUUpRoFUv5aBZHQJL1JJI1+Ap1fZQoaAZoCWgPQwjzHfzEgQ9wQJSGlFKUaBVNKAFoFkdAkvVLKifxt3V9lChoBmgJaA9DCGtiga9oFXFAlIaUUpRoFU0+AWgWR0CS9WI7Njb0dX2UKGgGaAloD0MIlpS7z7ERcUCUhpRSlGgVTRcBaBZHQJL2/C3w1BN1fZQoaAZoCWgPQwhtUzwuantzQJSGlFKUaBVNHgFoFkdAkvdF8LKFI3V9lChoBmgJaA9DCAEwnkGDZXJAlIaUUpRoFU0PAWgWR0CS9/ntfG+9dX2UKGgGaAloD0MIdXedDTlic0CUhpRSlGgVS/doFkdAkvg/YraufXV9lChoBmgJaA9DCLw7MlYbinJAlIaUUpRoFU0KAWgWR0CS+Y12aDwpdX2UKGgGaAloD0MIfH+D9mrTcUCUhpRSlGgVTSUBaBZHQJL545IYm9h1fZQoaAZoCWgPQwjwbfqzX+NxQJSGlFKUaBVNHgFoFkdAkvoTp5eJHnV9lChoBmgJaA9DCELqdvZVBHFAlIaUUpRoFU1cAWgWR0CS+kuTRplCdX2UKGgGaAloD0MIdPBMaJIBcECUhpRSlGgVS/hoFkdAkvtnd43WF3V9lChoBmgJaA9DCGtI3GPp9W1AlIaUUpRoFU0vAWgWR0CS/AY3vQWvdX2UKGgGaAloD0MIhPHTuDezbkCUhpRSlGgVTSoBaBZHQJL9Wn+AEuB1fZQoaAZoCWgPQwiyg0pch69wQJSGlFKUaBVNQAFoFkdAkv1rq+rU9nV9lChoBmgJaA9DCC2xMhp5zHBAlIaUUpRoFU0cAWgWR0CS/ll1r6+GdX2UKGgGaAloD0MIKgMHtDRKckCUhpRSlGgVTRQBaBZHQJL+quQp4KR1fZQoaAZoCWgPQwgYlGk0+VBxQJSGlFKUaBVNHgFoFkdAkv6r7Gecx3V9lChoBmgJaA9DCF4UPfDxnHFAlIaUUpRoFU08AWgWR0CS/35sTFl1dX2UKGgGaAloD0MIfAxWnCpKcECUhpRSlGgVTQMBaBZHQJL/u5mRNh51fZQoaAZoCWgPQwiRLGACN6tyQJSGlFKUaBVL92gWR0CTABsyzolldX2UKGgGaAloD0MIoQ+WsWFycECUhpRSlGgVTQ4BaBZHQJMBpMQEpy91fZQoaAZoCWgPQwhQ/Bhzl2RxQJSGlFKUaBVNFQFoFkdAkwHVSsKb8XV9lChoBmgJaA9DCDzAkxaudm5AlIaUUpRoFUvhaBZHQJMB1id8Rcx1fZQoaAZoCWgPQwiNDHIX4VZxQJSGlFKUaBVNDwFoFkdAkwLikXUH6nV9lChoBmgJaA9DCGIP7WOFanBAlIaUUpRoFUv9aBZHQJMM28Fpwjt1fZQoaAZoCWgPQwjgoL36eK9yQJSGlFKUaBVNNgFoFkdAkwzpIczZYnV9lChoBmgJaA9DCLQ7pBggwXFAlIaUUpRoFU0BAWgWR0CTDSOgxrSFdX2UKGgGaAloD0MIVvMckS8ZckCUhpRSlGgVTREBaBZHQJMNsa72+PB1fZQoaAZoCWgPQwgiizTxTg1wQJSGlFKUaBVL22gWR0CTDpq9oN/fdX2UKGgGaAloD0MIxAsiUlO5b0CUhpRSlGgVS/toFkdAkw8ok3S8anV9lChoBmgJaA9DCBXJVwKpGG1AlIaUUpRoFU0SAWgWR0CTD1x2jfvXdX2UKGgGaAloD0MIbmjKTv8lckCUhpRSlGgVTQMBaBZHQJMQT6+FlCl1fZQoaAZoCWgPQwjqIoWy8PJyQJSGlFKUaBVL32gWR0CTEFrf+CK8dX2UKGgGaAloD0MI3nNgOQLQcECUhpRSlGgVTQABaBZHQJMQx9LHuJF1fZQoaAZoCWgPQwif46PFmc1wQJSGlFKUaBVNAgFoFkdAkxEt0eU6gnV9lChoBmgJaA9DCKWFyypsMXFAlIaUUpRoFUvTaBZHQJMR9TBInSh1fZQoaAZoCWgPQwgsK01KgTBwQJSGlFKUaBVNKgFoFkdAkxJuEqUeMnV9lChoBmgJaA9DCLqhKTu9t3BAlIaUUpRoFU0oAWgWR0CTFApVCHARdX2UKGgGaAloD0MIE/QXegSOcECUhpRSlGgVTQ8BaBZHQJMUuEBbOeJ1fZQoaAZoCWgPQwgH6/8c5l5yQJSGlFKUaBVNDQFoFkdAkxS8yeqaPXV9lChoBmgJaA9DCIwTX+1opnBAlIaUUpRoFU1nAWgWR0CTFPPEKmbcdX2UKGgGaAloD0MIVTNrKeB8ckCUhpRSlGgVTQ4BaBZHQJMVLf/FR511fZQoaAZoCWgPQwivl6YIcMlyQJSGlFKUaBVNCgFoFkdAkxVsBZIQOHV9lChoBmgJaA9DCLJnz2XqCnFAlIaUUpRoFU0AAWgWR0CTFgO09hZydX2UKGgGaAloD0MID5pd99a1bUCUhpRSlGgVS/toFkdAkxZVoL5RCXV9lChoBmgJaA9DCG1VEtlHwHJAlIaUUpRoFUv3aBZHQJMXtiiItUZ1fZQoaAZoCWgPQwhVF/AywytyQJSGlFKUaBVL32gWR0CTGCDifg76dX2UKGgGaAloD0MI7//jhAn4cUCUhpRSlGgVTQ4BaBZHQJMYqK+BYmt1fZQoaAZoCWgPQwikp8gh4ghvQJSGlFKUaBVL+2gWR0CTGOa/h2nsdX2UKGgGaAloD0MIUInrGFdJc0CUhpRSlGgVTR4BaBZHQJMY9ikO7QN1fZQoaAZoCWgPQwh7wac5ea9wQJSGlFKUaBVNDQFoFkdAkxlq3/givHV9lChoBmgJaA9DCCZWRiMfF3JAlIaUUpRoFU0GAWgWR0CTGepH7P6bdX2UKGgGaAloD0MIlDKpoU2tcECUhpRSlGgVTRYBaBZHQJMagyvcJt11fZQoaAZoCWgPQwjuzATDuQpOQJSGlFKUaBVL32gWR0CTJcEXcgyNdX2UKGgGaAloD0MIW11OCchcckCUhpRSlGgVTSwBaBZHQJMl27jDKo11fZQoaAZoCWgPQwi+amXCLx5yQJSGlFKUaBVNDAFoFkdAkybQLApKBnV9lChoBmgJaA9DCBWqm4s/R3JAlIaUUpRoFUvxaBZHQJMm6YNRWLh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 488, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}