File size: 3,806 Bytes
36746ff
 
e78573e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36746ff
e78573e
 
 
 
 
 
 
6a062bf
e78573e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
datasets:
- michelecafagna26/hl
language:
- en
metrics:
- sacrebleu
- rouge
- meteor
- spice
- cider

library_name: pytorch
tags:
- pytorch
- image-to-text
---

# Model Card: VinVL for Captioning ๐Ÿ–ผ๏ธ

[Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL)  for **rationale description generation** downstream task.

# Model fine-tuning ๐Ÿ‹๏ธโ€

The model has been finetuned for 10 epochs on the rationale captions of the [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) (available on ๐Ÿค— HUB: [michelecafagna26/hl](https://huggingface.co./datasets/michelecafagna26/hl))

# Test set metrics ๐Ÿ“ˆ

Obtained with beam size 5 and max length 20

| Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE |
|--------|--------|--------|--------|--------|---------|-------|-------|
|  0.55  |  0.38  |  0.23  |  0.15  |  0.17  |  0.44   |  0.44 |  0.10 |


# Usage and Installation:

More info about how to install and use this model can be found here: [michelecafagna26/VinVL
](https://github.com/michelecafagna26/VinVL)

# Feature extraction โ›๏ธ

This model has a separate Visualbackbone used to extract features.
More info about:
- the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co./michelecafagna26/vinvl_vg_x152c4)
- the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone)

# Quick start: ๐Ÿš€

```python
from transformers.pytorch_transformers import BertConfig, BertTokenizer
from oscar.modeling.modeling_bert import BertForImageCaptioning
from oscar.wrappers import OscarTensorizer

ckpt = "path/to/the/checkpoint"
device = "cuda" if torch.cuda.is_available() else "cpu"

# original code
config = BertConfig.from_pretrained(ckpt)
tokenizer = BertTokenizer.from_pretrained(ckpt)
model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device)

# This takes care of the preprocessing
tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device)

# numpy-arrays with shape (1, num_boxes, feat_size)
# feat_size is 2054 by default in VinVL
visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0)

# labels are usually extracted by the features extractor
labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']]

inputs = tensorizer.encode(visual_features, labels=labels)
outputs = model(**inputs)

pred = tensorizer.decode(outputs)

# the output looks like this:
# pred = {0: [{'caption': 'he is on leisure', 'conf': 0.7070220112800598]}
```

# Citations ๐Ÿงพ

HL Dataset paper:

```BibTeX
@inproceedings{cafagna2023hl,
  title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and
{R}ationales},
  author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert},
  booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)},
address = {Prague, Czech Republic},
  year={2023}
}
```

Please consider citing the original project and the VinVL paper

```BibTeX

@misc{han2021image,
      title={Image Scene Graph Generation (SGG) Benchmark}, 
      author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang},
      year={2021},
      eprint={2107.12604},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@inproceedings{zhang2021vinvl,
  title={Vinvl: Revisiting visual representations in vision-language models},
  author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5579--5588},
  year={2021}
}
```