--- license: apache-2.0 tags: - generated_from_trainer datasets: - dataset/riksdagen metrics: - wer model-index: - name: whisper-small-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: dataset/riksdagen audiofolder type: dataset/riksdagen config: test split: test args: audiofolder metrics: - name: Wer type: wer value: 0.2426515530366172 --- # whisper-small-sv This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the dataset/riksdagen audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3479 - Wer: 0.2427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5024 | 0.04 | 250 | 0.5073 | 0.2948 | | 0.4684 | 0.08 | 500 | 0.4639 | 0.2784 | | 0.4246 | 0.12 | 750 | 0.4396 | 0.2758 | | 0.4132 | 0.17 | 1000 | 0.4222 | 0.2664 | | 0.4021 | 0.21 | 1250 | 0.4101 | 0.2633 | | 0.3871 | 0.25 | 1500 | 0.3982 | 0.2619 | | 0.3813 | 0.29 | 1750 | 0.3895 | 0.2577 | | 0.3878 | 0.33 | 2000 | 0.3827 | 0.2533 | | 0.3704 | 0.37 | 2250 | 0.3770 | 0.2533 | | 0.3516 | 0.42 | 2500 | 0.3714 | 0.2540 | | 0.3792 | 0.46 | 2750 | 0.3675 | 0.2495 | | 0.3476 | 0.5 | 3000 | 0.3636 | 0.2456 | | 0.3522 | 0.54 | 3250 | 0.3611 | 0.2462 | | 0.3545 | 0.58 | 3500 | 0.3560 | 0.2440 | | 0.3426 | 0.62 | 3750 | 0.3543 | 0.2464 | | 0.3437 | 0.66 | 4000 | 0.3524 | 0.2464 | | 0.3562 | 0.71 | 4250 | 0.3507 | 0.2452 | | 0.3555 | 0.75 | 4500 | 0.3491 | 0.2426 | | 0.3397 | 0.79 | 4750 | 0.3483 | 0.2419 | | 0.3516 | 0.83 | 5000 | 0.3479 | 0.2427 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.0a0+8a1a93a - Datasets 2.7.1 - Tokenizers 0.13.2