File size: 2,870 Bytes
4e83fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- dataset/riksdagen
metrics:
- wer
model-index:
- name: whisper-small-sv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: dataset/riksdagen audiofolder
type: dataset/riksdagen
config: test
split: test
args: audiofolder
metrics:
- name: Wer
type: wer
value: 0.2426515530366172
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-sv
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co./openai/whisper-small) on the dataset/riksdagen audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3479
- Wer: 0.2427
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5024 | 0.04 | 250 | 0.5073 | 0.2948 |
| 0.4684 | 0.08 | 500 | 0.4639 | 0.2784 |
| 0.4246 | 0.12 | 750 | 0.4396 | 0.2758 |
| 0.4132 | 0.17 | 1000 | 0.4222 | 0.2664 |
| 0.4021 | 0.21 | 1250 | 0.4101 | 0.2633 |
| 0.3871 | 0.25 | 1500 | 0.3982 | 0.2619 |
| 0.3813 | 0.29 | 1750 | 0.3895 | 0.2577 |
| 0.3878 | 0.33 | 2000 | 0.3827 | 0.2533 |
| 0.3704 | 0.37 | 2250 | 0.3770 | 0.2533 |
| 0.3516 | 0.42 | 2500 | 0.3714 | 0.2540 |
| 0.3792 | 0.46 | 2750 | 0.3675 | 0.2495 |
| 0.3476 | 0.5 | 3000 | 0.3636 | 0.2456 |
| 0.3522 | 0.54 | 3250 | 0.3611 | 0.2462 |
| 0.3545 | 0.58 | 3500 | 0.3560 | 0.2440 |
| 0.3426 | 0.62 | 3750 | 0.3543 | 0.2464 |
| 0.3437 | 0.66 | 4000 | 0.3524 | 0.2464 |
| 0.3562 | 0.71 | 4250 | 0.3507 | 0.2452 |
| 0.3555 | 0.75 | 4500 | 0.3491 | 0.2426 |
| 0.3397 | 0.79 | 4750 | 0.3483 | 0.2419 |
| 0.3516 | 0.83 | 5000 | 0.3479 | 0.2427 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.12.0a0+8a1a93a
- Datasets 2.7.1
- Tokenizers 0.13.2
|