File size: 1,721 Bytes
e412c27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- as
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- google/fluers
model-index:
- name: SpeechT5 TTS Assamese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SpeechT5 TTS Assamese

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co./microsoft/speecht5_tts) on the Google fluers dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3991

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch    | Step | Validation Loss |
|:-------------:|:--------:|:----:|:---------------:|
| 0.4812        | 30.7692  | 200  | 0.4176          |
| 0.4038        | 61.5385  | 400  | 0.4009          |
| 0.3862        | 92.3077  | 600  | 0.3885          |
| 0.3433        | 123.0769 | 800  | 0.3843          |
| 0.3252        | 153.8462 | 1000 | 0.3991          |


### Framework versions

- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1