|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.632 average_precision: 0.368 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.387 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.632 average_precision: 0.368 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.387 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.947 average_precision: 0.966 roc_auc: 0.983 recall_macro: 0.933 f1_macro: 0.942 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.947 average_precision: 0.966 roc_auc: 0.983 recall_macro: 0.933 f1_macro: 0.942 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.975 average_precision: 0.984 roc_auc: 0.987 recall_macro: 0.972 f1_macro: 0.973 |
|
=== new best MultinomialNB() (using recall_macro): |
|
accuracy: 0.975 average_precision: 0.984 roc_auc: 0.987 recall_macro: 0.972 f1_macro: 0.973 |
|
|
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.975 average_precision: 0.949 roc_auc: 0.972 recall_macro: 0.972 f1_macro: 0.973 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.956 average_precision: 0.919 roc_auc: 0.957 recall_macro: 0.952 f1_macro: 0.953 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.975 average_precision: 0.949 roc_auc: 0.972 recall_macro: 0.972 f1_macro: 0.973 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.975 average_precision: 0.987 roc_auc: 0.990 recall_macro: 0.972 f1_macro: 0.973 |
|
Running LogisticRegression(class_weight='balanced', max_iter=1000) |
|
accuracy: 0.975 average_precision: 0.987 roc_auc: 0.990 recall_macro: 0.972 f1_macro: 0.973 |
|
|
|
Best model: |
|
Pipeline(steps=[('minmaxscaler', MinMaxScaler()), ('multinomialnb', MultinomialNB())]) |
|
Best Scores: |
|
accuracy: 0.975 average_precision: 0.984 roc_auc: 0.987 recall_macro: 0.972 f1_macro: 0.973 |
|
|